Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract presentation" with value "Coastal morphological evolution is caused by a wide range of coupled cross-shore and alongshore sediment transport processes associated with short waves, infragravity waves, and wave-induced currents. However, the fundamental transport mechanisms occur within the thin bottom boundary layer and are dictated by turbulence-sediment interaction and inter-granular interactions. In the past decade, significant progresses have been made in modeling sediment transport using Eulerian-Eulerian or Eulerian-Lagrangian two-phase flow approach. However, most of these models are limited to one-dimensional-vertical (1DV) formulation, which is only applicable to Reynolds-averaged sheet flow condition. Consequently, complex processes such as instabilities of the transport layer, bedform dynamics and turbulence-resolving capability cannot be simulated. The main objective of my research study was to develop a multi-dimensional four-way coupled two-phase model for sediment transport that can be used for Reynolds-averaged modeling for large-scale applications or for turbulence-resolving simulations at small-scale.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Presenters-0077  + (Coastal morphological evolution is caused Coastal morphological evolution is caused by a wide range of coupled cross-shore and alongshore sediment transport processes associated with short waves, infragravity waves, and wave-induced currents. However, the fundamental transport mechanisms occur within the thin bottom boundary layer and are dictated by turbulence-sediment interaction and inter-granular interactions. In the past decade, significant progresses have been made in modeling sediment transport using Eulerian-Eulerian or Eulerian-Lagrangian two-phase flow approach. However, most of these models are limited to one-dimensional-vertical (1DV) formulation, which is only applicable to Reynolds-averaged sheet flow condition. Consequently, complex processes such as instabilities of the transport layer, bedform dynamics and turbulence-resolving capability cannot be simulated. The main objective of my research study was to develop a multi-dimensional four-way coupled two-phase model for sediment transport that can be used for Reynolds-averaged modeling for large-scale applications or for turbulence-resolving simulations at small-scale.ence-resolving simulations at small-scale.)