Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract presentation" with value "Cheniers are ridges consisting of coarse-grained sediments, resting on top of muddy sediment. Along these muddy coastlines, cheniers provide shelter against wave attack, mitigating erosion or even enhancing accretion. As such, cheniers play an important role in the dynamics of the entire coastal landscape. This research focused on cheniers along mangrove-mud coasts. Therefore, chenier dynamics needed to be understood at the temporal and spatial scales of the mangrove vegetation as well. We developed a hybrid modelling approach, combining the strengths of complex process-based modelling (Delft3D), which allowed us to model the mixed-sediment dynamics at small temporal and spatial scales, with the strengths of a highly idealized profile model, providing low computational efforts for larger temporal and spatial scales.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Presenters-0600  + (Cheniers are ridges consisting of coarse-gCheniers are ridges consisting of coarse-grained sediments, resting on top of muddy sediment. Along these muddy coastlines, cheniers provide shelter against wave attack, mitigating erosion or even enhancing accretion. As such, cheniers play an important role in the dynamics of the entire coastal landscape. This research focused on cheniers along mangrove-mud coasts. Therefore, chenier dynamics needed to be understood at the temporal and spatial scales of the mangrove vegetation as well. We developed a hybrid modelling approach, combining the strengths of complex process-based modelling (Delft3D), which allowed us to model the mixed-sediment dynamics at small temporal and spatial scales, with the strengths of a highly idealized profile model, providing low computational efforts for larger temporal and spatial scales.ts for larger temporal and spatial scales.)