Model help:SuspSedDensityStrat: Difference between revisions

From CSDMS
(Created page with "<!-- How to create a new "Model help" page: 1) Log in to the wiki 2) Create a new page for each model, by using the following URL: * http://csdms.colorado.edu/wiki/Model help:...")
 
m (Text replacement - "http://csdms.colorado.edu/wiki/" to "https://csdms.colorado.edu/wiki/")
 
(13 intermediate revisions by 2 users not shown)
Line 3: Line 3:
1) Log in to the wiki
1) Log in to the wiki
2) Create a new page for each model, by using the following URL:
2) Create a new page for each model, by using the following URL:
   * http://csdms.colorado.edu/wiki/Model help:<modelname>
   * https://csdms.colorado.edu/wiki/Model help:<modelname>
   * Replace <modelname> with the name of a model
   * Replace <modelname> with the name of a model
3) Than follow the link "edit this page"
3) Than follow the link "edit this page"
Line 19: Line 19:
The model is the calculation of Density Stratification Effects Associated with Suspended Sediment in Open Channels.
The model is the calculation of Density Stratification Effects Associated with Suspended Sediment in Open Channels.


This program calculates the effect of sediment self-stratification on the streamwise velocity and suspended sediment concentration profiles in open-channel flow. Two options are given. Either the near-bed reference concentration Cr can be specified by the user, or the user can specify a shear velocity due to skin friction u*s and compute Cr from the Garcia-Parker sediment entrainment relation.  
This program calculates the effect of sediment self-stratification on the streamwise velocity and suspended sediment concentration profiles in open-channel flow. Two options are given. Either the near-bed reference concentration Cr can be specified by the user, or the user can specify a shear velocity due to skin friction u<sub>*s</sub> and compute Cr from the Garcia-Parker sediment entrainment relation.  


<div id=CMT_MODEL_PARAMETERS>
<div id=CMT_MODEL_PARAMETERS>
==Model parameters==
==Model parameters==
= First tab header =
= Input Files and Directories =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|Input directory
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|path to input files
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"|
|-
|Site prefix
|Site prefix for Input/Output files
|
|-
|Case prefix
|Case prefix for Input/Output files
|
|-
|}
|}


= Second tab header =
= Run Parameters =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|Specific gravity of sediment
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"| -
|-
|Sediment grain size
|
| mm
|-
|Flow depth
|
| m
|-
|Composite Roughness height (including bedform effects)
|
| mm
|-
|Shear velocity
| shear velocity
| cm / s
|-
|Kinematic Viscosity of Water
|
| cm<sup>2</sup> / s
|-
|Shear velocity due to Skin Friction
|
| cm / s
|-
|}
|}


= Etc. tab header =
= About =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
!Parameter!!Description!!Unit
|-valign="top"
|width="20%"|Model name
|width="60%"|name of the model
|width="20%"| -
|-
|Author name
|name of the model author
| -
|-
|}
<headertabs/>
<headertabs/>
</div>


==Uses ports==
==Uses ports==
Line 54: Line 100:


==Main equations==
==Main equations==
* definitions
1) Composite bed roughness
::::{|
::::{|
|width=500px|<math>k_{c} = {\frac{11 H}{e^ \left ( \kappa C z \right ) }} </math>
|width=700px|<math>k_{c} = {\frac{11 H}{e^ \left ( \kappa C z \right ) }} </math>
|width=50px align="right"|(1)
|width=50px align="right"|(1)
|}
|}
2) Dimensionless Chezy resistance coefficient
::::{|
::::{|
|width=500px|<math>Cz = C_{f} ^ \left ( {\frac{-1}{2}} \right ) ={\frac{U}{u_{*}}} </math>
|width=700px|<math>Cz = C_{f} ^ \left ( {\frac{-1}{2}} \right ) ={\frac{U}{u_{*}}} </math>
|width=50px align="right"|(2)
|width=50px align="right"|(2)
|}
|}
3) Submerged specific gravity of the sediment
::::{|
::::{|
|width=500px|<math>R = {\frac{\rho _{s}}{\rho}} - 1 </math>
|width=700px|<math>R = {\frac{\rho _{s}}{\rho}} - 1 </math>
|width=50px align="right"|(3)
|width=50px align="right"|(3)
|}
|}
4) Explicit particle Reynolds number
::::{|
::::{|
|width=500px|<math>Re_{p} = {\frac{sqrt \left ( R g D \right ) D}{\nu}} </math>
|width=700px|<math>Re_{p} = {\frac{\sqrt {R g D } D}{\nu}} </math>
|width=50px align="right"|(4)
|width=50px align="right"|(4)
|}
|}
5) Fall number
::::{|
::::{|
|width=500px|<math>R_{f} = f \left ( Re_{p} \right ) </math>
|width=700px|<math>R_{f} = f \left ( Re_{p} \right ) = {\frac{v_{s}}{\sqrt { R g D }}} </math>
|width=50px align="right"|(5)
|width=50px align="right"|(5)
|}
|}
* Basic forms
1) Momentum conservation equation for the flow
::::{|
::::{|
|width=500px|<math>R_{f} = {\frac{v_{s}}{sqrt \left ( R g D \right )}} </math>
|width=700px|<math>\nu _{t} {\frac{d \bar{u}}{dz}} = u_{*} ^2 \left ( 1 - {\frac{z}{H}} \right ) </math>
|width=50px align="right"|(6)
|width=50px align="right"|(6)
|}
|}
2) Conservation equation for the suspended sediment
::::{|
::::{|
|width=500px|<math>\nu _{t} {\frac{du^*}{dz}} = u_{*} ^2 \left ( 1 - {\frac{z}{H}} \right ) </math>
|width=700px|<math>v_{s} \bar{c} + \nu _{t} {\frac {d \bar{c}}{dz}} = 0 </math>
|width=50px align="right"|(7)
|width=50px align="right"|(7)
|}
|}
3) Eddy viscosity
::::{|
::::{|
|width=500px|<math>v_{s} c^* + \nu _{t} {\frac {dc^*}{dz}} = 0 </math>
|width=700px|<math>\nu_{t} = \kappa u_{*} H F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right )  </math>
|width=50px align="right"|(8)
|width=50px align="right"|(8)
|}
|}
4) Dimensionless upward normal coordinate
::::{|
::::{|
|width=500px|<math>\nu_{t} = \kappa u_{*} H F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right )  </math>
|width=700px|<math>\zeta = {\frac{z}{H}} </math>
|width=50px align="right"|(9)
|width=50px align="right"|(9)
|}
|}
5) Gradient Richardson number
::::{|
::::{|
|width=500px|<math>\zeta = {\frac{z}{H}} </math>
|width=700px|<math>Ri = -Rg {\frac{{\frac{d \bar{c}}{dz}}}{\left ( {\frac{d \bar{u}}{dz}} \right ) ^2}} </math>
|width=50px align="right"|(10)
|width=50px align="right"|(10)
|}
|}
6) Bottom boundary condition of velocity (using the rough logarithmic law)
::::{|
::::{|
|width=500px|<math>Ri = -Rg {\frac{{\frac{dc^*}{dz}}}{\left ( {\frac{du^*}{dz}} \right ) ^2}} </math>
|width=700px|<math>{\frac{\bar{u} |_{\zeta_{r}}}{u_{*}}} = {\frac{1}{\kappa}} ln \left ( 30 \zeta _{r} {\frac{H}{k_{c}}} \right ) </math>
|width=50px align="right"|(11)
|width=50px align="right"|(11)
|}
|}
* Dimensionless forms
::::{|
::::{|
|width=500px|<math>{\frac{u^* |_{\zeta_{t}}}{u_{*}}} = {\frac{1}{\kappa}} ln \left ( 30 \zeta _{r} {\frac{H}{k_{c}}} \right ) </math>
|width=700px|<math>u={\frac{\bar{u}}{u_{*}}} </math>
|width=50px align="right"|(12)
|width=50px align="right"|(12)
|}
|}
* Dimensionless forms
::::{|
::::{|
|width=500px|<math>u={\frac{u^*}{u_{*}}} </math>
|width=700px|<math>c = {\frac{\bar{c}}{\bar{c} _{r}}} </math>
|width=50px align="right"|(13)
|width=50px align="right"|(13)
|}
|}
::::{|
::::{|
|width=500px|<math>c = {\frac{c^*}{c_{r} ^*}} </math>
|width=700px|<math>{\frac{du}{d\zeta}} = {\frac{\left ( 1 - \zeta \right )}{\kappa F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right )}} </math>
|width=50px align="right"|(14)
|width=50px align="right"|(14)
|}
|}
::::{|
::::{|
|width=500px|<math>{\frac{du}{d\zeta}} = {\frac{\left ( 1 - \zeta \right )}{\kappa F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right )}} </math>
|width=700px|<math>{\frac{dc}{d \zeta}} = {\frac{1}{\kappa u_{*r}}} {\frac{1}{F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right ) }} c </math>
|width=50px align="right"|(15)
|width=50px align="right"|(15)
|}
|}
::::{|
::::{|
|width=500px|<math>{\frac{dc}{d \zeta}} = {\frac{1}{\kappa u_{*r}}} {\frac{1}{F{1} \left ( \zeta \right ) F_{2} \left ( Ri \right ) }} c </math>
|width=700px|<math>Ri = - Ri_{*} {\frac{{\frac{dc}{d \zeta}}}{\left ( {\frac{du}{d \zeta}} \right ) ^2 }} </math>
|width=50px align="right"|(16)
|width=50px align="right"|(16)
|}
|}
::::{|
::::{|
|width=500px|<math>Ri = - Ri_{*} {\frac{{\frac{dc}{d \zeta}}}{\left ( {\frac{du}{d \zeta}} \right ) ^2 }} </math>
|width=700px|<math>u_{*r} = {\frac{u_{*}}{v_{s}}} </math>
|width=50px align="right"|(17)
|width=50px align="right"|(17)
|}
|}
::::{|
::::{|
|width=500px|<math>u | _{*r} = {\frac{u_{*}}{v_{s}}} </math>
|width=700px|<math>Ri_{*} = {\frac{R g H \bar{c} _{r}}{u_{*} ^2}} </math>
|width=50px align="right"|(18)
|width=50px align="right"|(18)
|}
|}
* Forms for the functions F_{1} and F{2}
1) Standard form for the function F<sub>1</sub>
::::{|
::::{|
|width=500px|<math>Ri_{*} = {\frac{R g H c_{r} ^*}{u_{*} ^2}} </math>
|width=700px|<math>F{1} = \zeta \left ( 1 - \zeta \right ) </math>
|width=50px align="right"|(19)
|width=50px align="right"|(19)
|}
|}
* Forms for the functions F_{1} and F{2}
2)Alternative form for the function F<sub>1</sub> (Simth and McLean (1977))
ζ_{r} <= ζ < 0.3
::::{|
::::{|
|width=500px|<math>F{1} = \zeta \left ( 1 - \zeta \right ) </math>
|width=700px|<math>F_{1} = \left\{\begin{matrix} \zeta +  1.32892 \zeta ^2 - 16.8632 \zeta ^3 + 25.22663 \zeta ^4 & \zeta _{r} <= \zeta < 0.3 \\ 0.160552 +0.075605 \zeta -0.1305618 \zeta ^2 - 0.1055945 \zeta ^3 & 0.3 <= \zeta <= 1 \end{matrix}\right. </math>
|width=50px align="right"|(20)
|width=50px align="right"|(20)
|}
|}
* Simth and McLean (1977)
3) Alternative form for the function F<sub>1</sub> (Gelfenbaum and Smith (1986))
ζ_{r} <= ζ < 0.3
::::{|
::::{|
|width=500px|<math>F_{1} = \zeta +  1.32892 \zeta ^2 - 16.8632 \zeta ^3 + 25.22663 \zeta ^4 </math>
|width=700px|<math> F_{1} = \zeta exp \left ( - \zeta - 3.2 \zeta ^2 + {\frac{2}{3}} \zeta ^2 \right )  </math>
|width=50px align="right"|(21)
|width=50px align="right"|(21)
|}
|}
0.3 <= ζ <= 1
4) Form for function F<sub>2</sub> (Smith and McLean (1977))
::::{|
::::{|
|width=500px|<math> F{1} = 0.160552 +0.075605 \zeta -0.1305618 \zeta ^2 - 0.1055945 \zeta ^3 </math>
|width=700px|<math> F{2} = 1 - 4.7 Ri  </math>
|width=50px align="right"|(22)
|width=50px align="right"|(22)
|}
|}
Gelfenbaum and Smith (1986)
5) Alternative form for the function F<sub>2</sub> (Gelfenbaum and Smith (1986))
::::{|
::::{|
|width=500px|<math> F_{1} = \zeta exp \left ( - \zeta - 3.2 \zeta ^2 + {\frac{2}{3}} \zeta ^2 \right )  </math>
|width=700px|<math> F_{2} = {\frac{1}{1 + 10.0 X}} </math>
|width=50px align="right"|(23)
|width=50px align="right"|(23)
|}
|}
Smith and McLean (1977)
::::{|
::::{|
|width=500px|<math> F{2} = 1 - 4.7 Ri </math>
|width=700px|<math> X = {\frac{1.35 Ri}{1 + 1.35 Ri}} </math>
|width=50px align="right"|(24)
|width=50px align="right"|(24)
|}
|}
Gelfenbaum and Smith (1986)
* Form for near-bed concentration
specification for reference sediment concentration
::::{|
::::{|
|width=500px|<math> F_{2} = {\frac{1}{1 + 10.0 X}} </math>
|width=700px|<math> \bar{c} _{r} = {\frac{A X_{e} ^*}{1 + {\frac{A}{0.3} X_{e} ^5}}}</math>
|width=50px align="right"|(25)
|width=50px align="right"|(25)
|}
|}
::::{|
::::{|
|width=500px|<math> X = {\frac{1.35 Ri}{1 + 1.35 Ri}} </math>
|width=700px|<math> X_{e} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) </math>
|width=50px align="right"|(26)
|width=50px align="right"|(26)
|}
|}
* Form for near-bed concentration
* Solution equation
1) Calculation for velocity
::::{|
::::{|
|width=500px|<math> c_{r} ^* = {\frac{A X_{e} ^*}{1 + {\frac{A}{0.3} X_{e} ^5}}}</math>
|width=700px|<math> u = {\frac{1}{\kappa}} ln \left ( 30 {\frac{H}{k_{s}}} \zeta \right )  </math>
|width=50px align="right"|(27)
|width=50px align="right"|(27)
|}
|}
2) Calculation for suspended sediment concentration
::::{|
::::{|
|width=500px|<math> X_{e} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) </math>
|width=700px|<math> c = \left ( {\frac{\left ( 1 - \zeta \right ) / \zeta }{\left ( 1 - \zeta _{r} \right ) \zeta _{r}}}\right ) ^ \left ( {\frac{1}{\kappa u_{*r}}} \right ) </math>
|width=50px align="right"|(28)
|width=50px align="right"|(28)
|}
|}
* Solution equation
3) Gradient Richardson number
::::{|
::::{|
|width=500px|<math> u = {\frac{1}{\kappa}} ln \left ( 30 {\frac{H}{k_{s}}} \right ) </math>
|width=700px|<math> Ri =Ri_{*} {\frac{\kappa \zeta F_{2}}{u_{*r} \left ( 1 - \zeta \right ) }} c </math>
|width=50px align="right"|(29)
|width=50px align="right"|(29)
|}
::::{|
|width=500px|<math> c = \left ( {\frac{\left ( 1 - \zeta \right ) / \zeta }{\left ( 1 - \zeta _{r} \right ) \zeta _{r}}}\right ) ^ \left ( {\frac{1}{\kappa u_{*r}}} \right )  </math>
|width=50px align="right"|(30)
|}
::::{|
|width=500px|<math> Ri =Ri_{*} {\frac{\kappa \zeta F_{2}}{u_{*r} \left ( 1 - \zeta \right ) }} c </math>
|width=50px align="right"|(31)
|}
|}


Line 195: Line 250:
!Symbol!!Description!!Unit
!Symbol!!Description!!Unit
|-
|-
| u<sup>*</sup>
| ū
| streamwise velocity
| streamwise velocity
| m / s
| L / T
|-
|-
| c<sup>*</sup>
| bar{c}
| volume suspended sediment concentration
| volume suspended sediment concentration
| -
| M / L<sup>3</sup>
|-
| z
| coordinate upward normal from bed
| L
|-
|-
| H
| H
| depth
| water depth
| m
| L
|-
|-
| u<sub>*</sub>
| u<sub>*</sub>
| shear velocity
| shear velocity
| m / s
| L / T
|-
|-
| u<sub>*s</sub>
| u<sub>*s</sub>
| shear velocity due to skin friction
| shear velocity due to skin friction
| m / s
| L / T
|-
|-
| k<sub>c</sub>
| k<sub>c</sub>
| composite roughness
| composite bed roughness(includes bedform effects)
| -
| -
|-
|-
| U
| U
| depth-averaged flow velocity
| depth-averaged flow velocity
| m / s
| L / T
|-
|-
| k<sub>s</sub>
| k<sub>s</sub>
Line 229: Line 288:
| ρ
| ρ
| water density
| water density
| kg / m<sup>3</sup>
| M / L<sup>3</sup>
|-
|-
| ν
| ν
| kinematic viscosity
| kinematic viscosity
| -
| -
|-
| C<sub>z</sub>
| dimensionless Chezy resistance coefficient
| -
|-
| C<sub>f</sub>
| bed friction coefficient
| -
|-
| D
| sediment size
| L
|-
|-
| ρ<sub>s</sub>
| ρ<sub>s</sub>
| sediment density
| sediment density
| kg / m<sup>3</sup>
| M / L<sup>3</sup>
|-
|-
| v</sub>s</sub>
| v<sub>s</sub>
| fall velocity
| fall velocity
| m / s
| L / T
|-
| F<sub>1</sub>, F<sub>2</sub>
| specified functions
| -
|-
| ζ
| dimensionless upward normal coordinate
| -
|-
|-
| Re<sub>p</sub>
| Re<sub>p</sub>
| Reynolds number
| explicit particle Reynolds number
| -
| -
|-
|-
| g
| g
| gravitational acceleration
| gravitational acceleration
| m / s<sup>2</sup>
| L / T<sup>2</sup>
|-
| R<sub>f</sub>
| fall number
| -
|-
|-
| ν<sub>t</sub>
| ν<sub>t</sub>
Line 256: Line 339:
|-
|-
| κ
| κ
| Karman constant, equals to 0.4
| Von Karman constant, equals to 0.4
| -
| -
|-   
|-   
| Ri
| Ri
| gradient Richardson number
| gradient Richardson number
| -
|-
| u
| dimensionless velocity
| -
|-
| c
| dimensionless suspended sediment concentration
| -
|-
| bar{c}<sub>r</sub>
| near-bed sediment concentration
| -  
| -  
|-
|-
Line 266: Line 361:
| coefficient, equals to 1.3 * 10<sup>-7</sup>
| coefficient, equals to 1.3 * 10<sup>-7</sup>
| -
| -
|-
|-
| u<sub>*s</sub>
| shear velocity due to skin friction only
| L / T
|-
| X<sub>e</sub>
| similarity variable for uniform sediment
| -
|-
| D<sub>sx</sub>
| D<sub>sx</sub>
| size in the surface material, such that x percentage of the material is finer
| size in the surface material, such that x percentage of the material is finer
| mm
| L
|-
| R
| sediment submerged specific gravity
| -
|-
| ζ<sub>r</sub>
| normalized reference bed elevation
| L
|-
| Ri<sub>*</sub>
|
| -
|-
|-
|}
|}


'''Output'''
{| {{Prettytable}} class="wikitable sortable"
!Symbol!!Description!!Unit
|-
| η
| height above bed surface relative to the water surface height
| L
|-
| u<sub>no</sub>
| normalized velocity without stratification
| L / T
|-
| c<sub>no</sub>
| normalized concentration without stratification
| M / L<sup>3</sup>
|-
| u<sub>nao</sub>
| depth-averaged normalized velocity without stratification effect
| L / T
|-
| c<sub>nao</sub>
| depth-averaged normalized concentration without stratification effect
| M / L<sup>3</sup>
|-
| q<sub>so</sub>
| depth-aveeraged normalized volume suspended sediment transport per unit width without stratification effect
| L<sup>2</sup> / T
|-
| u<sub>na</sub>
| depth-averaged normalized velocity with stratification effect
| L / T
|-
| c<sub>na</sub>
|depth-averaged normalized concentration with stratification effect
| M / L<sup>3</sup>
|-
| q<sub>s</sub>
| depth-averaged normalized volume suspended sediment transport per unit width with stratification effect
| M / L<sup>3</sup>
|-
|}
   </div>
   </div>
</div>
</div>


==Notes==
==Notes==  
<span class="remove_this_tag">Any notes, comments, you want to share with the user</span>  
The program will run through however many iterations it takes (up to 200) for the error on all the c<sub>n</sub> and u<sub>n</sub> values to be less than 0.001 to account for the stratification effects.


<span class="remove_this_tag">Numerical scheme</span>
The reference height is set at 0.05H, the number of intervals is set at 50, the constant of Von Korman, κ, is given a value of 0.4.


There is no GetData function for this program, because there is no time loop for which values may need to be retrieved.


==Examples==
==Examples==
Line 286: Line 443:


<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
* <span class="remove_this_tag">Upload file: http://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Upload file: https://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>


Line 304: Line 461:


==Links==
==Links==
[[http://csdms.colorado.edu/wiki/Model:SuspSedDensityStrat Model:SuspSedDensityStrat]]
[[Model:SuspSedDensityStrat]]


[[Category:Utility components]]
[[Category:Utility components]]

Latest revision as of 17:15, 19 February 2018

The CSDMS Help System

SuspSedDensityStrat

This model is used for calculating the effect of density stratification on the vertical profiles of velocity and suspended sediment.

Model introduction

The model is the calculation of Density Stratification Effects Associated with Suspended Sediment in Open Channels.

This program calculates the effect of sediment self-stratification on the streamwise velocity and suspended sediment concentration profiles in open-channel flow. Two options are given. Either the near-bed reference concentration Cr can be specified by the user, or the user can specify a shear velocity due to skin friction u*s and compute Cr from the Garcia-Parker sediment entrainment relation.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
Specific gravity of sediment -
Sediment grain size mm
Flow depth m
Composite Roughness height (including bedform effects) mm
Shear velocity shear velocity cm / s
Kinematic Viscosity of Water cm2 / s
Shear velocity due to Skin Friction cm / s
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • definitions

1) Composite bed roughness

[math]\displaystyle{ k_{c} = {\frac{11 H}{e^ \left ( \kappa C z \right ) }} }[/math] (1)

2) Dimensionless Chezy resistance coefficient

[math]\displaystyle{ Cz = C_{f} ^ \left ( {\frac{-1}{2}} \right ) ={\frac{U}{u_{*}}} }[/math] (2)

3) Submerged specific gravity of the sediment

[math]\displaystyle{ R = {\frac{\rho _{s}}{\rho}} - 1 }[/math] (3)

4) Explicit particle Reynolds number

[math]\displaystyle{ Re_{p} = {\frac{\sqrt {R g D } D}{\nu}} }[/math] (4)

5) Fall number

[math]\displaystyle{ R_{f} = f \left ( Re_{p} \right ) = {\frac{v_{s}}{\sqrt { R g D }}} }[/math] (5)
  • Basic forms

1) Momentum conservation equation for the flow

[math]\displaystyle{ \nu _{t} {\frac{d \bar{u}}{dz}} = u_{*} ^2 \left ( 1 - {\frac{z}{H}} \right ) }[/math] (6)

2) Conservation equation for the suspended sediment

[math]\displaystyle{ v_{s} \bar{c} + \nu _{t} {\frac {d \bar{c}}{dz}} = 0 }[/math] (7)

3) Eddy viscosity

[math]\displaystyle{ \nu_{t} = \kappa u_{*} H F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right ) }[/math] (8)

4) Dimensionless upward normal coordinate

[math]\displaystyle{ \zeta = {\frac{z}{H}} }[/math] (9)

5) Gradient Richardson number

[math]\displaystyle{ Ri = -Rg {\frac{{\frac{d \bar{c}}{dz}}}{\left ( {\frac{d \bar{u}}{dz}} \right ) ^2}} }[/math] (10)

6) Bottom boundary condition of velocity (using the rough logarithmic law)

[math]\displaystyle{ {\frac{\bar{u} |_{\zeta_{r}}}{u_{*}}} = {\frac{1}{\kappa}} ln \left ( 30 \zeta _{r} {\frac{H}{k_{c}}} \right ) }[/math] (11)
  • Dimensionless forms
[math]\displaystyle{ u={\frac{\bar{u}}{u_{*}}} }[/math] (12)
[math]\displaystyle{ c = {\frac{\bar{c}}{\bar{c} _{r}}} }[/math] (13)
[math]\displaystyle{ {\frac{du}{d\zeta}} = {\frac{\left ( 1 - \zeta \right )}{\kappa F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right )}} }[/math] (14)
[math]\displaystyle{ {\frac{dc}{d \zeta}} = {\frac{1}{\kappa u_{*r}}} {\frac{1}{F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right ) }} c }[/math] (15)
[math]\displaystyle{ Ri = - Ri_{*} {\frac{{\frac{dc}{d \zeta}}}{\left ( {\frac{du}{d \zeta}} \right ) ^2 }} }[/math] (16)
[math]\displaystyle{ u_{*r} = {\frac{u_{*}}{v_{s}}} }[/math] (17)
[math]\displaystyle{ Ri_{*} = {\frac{R g H \bar{c} _{r}}{u_{*} ^2}} }[/math] (18)
  • Forms for the functions F_{1} and F{2}

1) Standard form for the function F1

[math]\displaystyle{ F{1} = \zeta \left ( 1 - \zeta \right ) }[/math] (19)

2)Alternative form for the function F1 (Simth and McLean (1977)) ζ_{r} <= ζ < 0.3

[math]\displaystyle{ F_{1} = \left\{\begin{matrix} \zeta + 1.32892 \zeta ^2 - 16.8632 \zeta ^3 + 25.22663 \zeta ^4 & \zeta _{r} \lt = \zeta \lt 0.3 \\ 0.160552 +0.075605 \zeta -0.1305618 \zeta ^2 - 0.1055945 \zeta ^3 & 0.3 \lt = \zeta \lt = 1 \end{matrix}\right. }[/math] (20)

3) Alternative form for the function F1 (Gelfenbaum and Smith (1986))

[math]\displaystyle{ F_{1} = \zeta exp \left ( - \zeta - 3.2 \zeta ^2 + {\frac{2}{3}} \zeta ^2 \right ) }[/math] (21)

4) Form for function F2 (Smith and McLean (1977))

[math]\displaystyle{ F{2} = 1 - 4.7 Ri }[/math] (22)

5) Alternative form for the function F2 (Gelfenbaum and Smith (1986))

[math]\displaystyle{ F_{2} = {\frac{1}{1 + 10.0 X}} }[/math] (23)
[math]\displaystyle{ X = {\frac{1.35 Ri}{1 + 1.35 Ri}} }[/math] (24)
  • Form for near-bed concentration

specification for reference sediment concentration

[math]\displaystyle{ \bar{c} _{r} = {\frac{A X_{e} ^*}{1 + {\frac{A}{0.3} X_{e} ^5}}} }[/math] (25)
[math]\displaystyle{ X_{e} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) }[/math] (26)
  • Solution equation

1) Calculation for velocity

[math]\displaystyle{ u = {\frac{1}{\kappa}} ln \left ( 30 {\frac{H}{k_{s}}} \zeta \right ) }[/math] (27)

2) Calculation for suspended sediment concentration

[math]\displaystyle{ c = \left ( {\frac{\left ( 1 - \zeta \right ) / \zeta }{\left ( 1 - \zeta _{r} \right ) \zeta _{r}}}\right ) ^ \left ( {\frac{1}{\kappa u_{*r}}} \right ) }[/math] (28)

3) Gradient Richardson number

[math]\displaystyle{ Ri =Ri_{*} {\frac{\kappa \zeta F_{2}}{u_{*r} \left ( 1 - \zeta \right ) }} c }[/math] (29)

Notes

The program will run through however many iterations it takes (up to 200) for the error on all the cn and un values to be less than 0.001 to account for the stratification effects.

The reference height is set at 0.05H, the number of intervals is set at 50, the constant of Von Korman, κ, is given a value of 0.4.

There is no GetData function for this program, because there is no time loop for which values may need to be retrieved.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

Dietrich, W. E. 1982 Settling velocity of natural particles. Water Resources Research, 18(6), 1615-1626.

Garcia, M. and Parker, G. 1991 Entrainment of bed sediment into suspension. J. Hydraul. Engrg., ASCE, 117(4), 414-435.

Gelfenbaum, G. and Smith, J. D. 1986 Experimental evaluation of a generalized suspended-sediment transport theory. In Shelf and Sandstones, Canadian Society of Petroleum Geologists Memoir II, Knight, R. J. and McLean, J. R., eds., 133 – 144.

Smith, J. D. and McLean, S. R. 1977 Spatially averaged flow over a wavy surface. J. Geophys. Res., 82(2), 1735-1746.

Links

Model:SuspSedDensityStrat