Model help:RiverWFRisingBaseLevelNormal: Difference between revisions

From CSDMS
No edit summary
m (Text replacement - "http://csdms.colorado.edu/wiki/" to "https://csdms.colorado.edu/wiki/")
 
(15 intermediate revisions by 2 users not shown)
Line 3: Line 3:
1) Log in to the wiki
1) Log in to the wiki
2) Create a new page for each model, by using the following URL:
2) Create a new page for each model, by using the following URL:
   * http://csdms.colorado.edu/wiki/Model help:<modelname>
   * https://csdms.colorado.edu/wiki/Model help:<modelname>
   * Replace <modelname> with the name of a model
   * Replace <modelname> with the name of a model
3) Than follow the link "edit this page"
3) Than follow the link "edit this page"
Line 17: Line 17:


==Model introduction==
==Model introduction==
This program is a companion to the program SteadyStateAg, which computes the steady-state aggradation of a river with a specified base level rise at the downstream end. This program computes the time evolution toward steady-state aggradation.
This program uses a Chézy formulation and either the Engelund-Hansen relation for bedload in sandy streams or the Parker relation for bedload in gravel bed streams assuming a uniform grain size to solve for the bed evolution, width evolution, and depth evolution in time and space.
 
The calculation assumes a specified, constant Chezy resistance coefficient Cz and floodplain width Bf. The sediment is assumed to be uniform with size D. All sediment transport is assumed to occur in a specified fraction of time during which the river is in flood, specified by an intermittency. If grain size D < 2 mm the Engelund-Hansen (1967) formulation for total bed material transport of sand is used. If grain size D >= 2 mm the Parker (1979) bedload transport formulation for gravel is used. The flow is computed using the normal flow approximation. The reach has downchannel length L, and base level is allowed to rise at a specified rate at the downstream end.


==Model parameters==
==Model parameters==
= First tab header =
= Input Files and Directories =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|Input directory
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|path to input files
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"|
|-
|Site prefix
|Site prefix for Input/Output files
|
|-
|Case prefix
|Case prefix for Input/Output files
|
|-
|}
|}


= Second tab header =
= Run Parameters =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|Flood discharge
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"| m<sup>3</sup> / s
|-
|upstream bed material sediment feed rate during flood (q)
|
| m<sup>3</sup> / m
|-
|Units of wash load deposited in the fan per unit bed material load deposited
|
| -
|-
|Intermittency
|flood intermittency
| -
|-
|Grain size of bed material
|
| mm
|-
|Submerged specific gravity of sediment
|
| -
|-
|Floodplain width  
|
| m
|-
|Channel sinuosity
|
| -
|-
|Bed porosity
|
| -
|-
|Chezy resistance coefficient
| coefficient in the Chezy relation
| -
|-
|Initial fluvial slope
|
| -
|-
|Rate of rise of downstream base level
|
| mm/year
|-
|Number of intervals
|
|
|-
|Number of prints desired
|
| -
|-
|Number of iterations per print
|
| -
|-
|Time step
|
| yr
|-
|Year base level change starts
|
| yr
|-
|Year base level change steps
|
| yr
|-
|Coefficient in the Engelund-Hansen 1967 load relation (sand, D < 2)
|
| -
|-
|Exponent in the Engelund-Hansen 1967 load relation (sand, D < 2)
|
| -
|-
|Channel-forming Shields number for sand-bed streams (sands, D < 2)
|
| -
|-
|Coefficient in the Parker 1979 load relation (Gravels, D>=2)
|
| -
|-
|Exponent in the Parker 1967 load relation (Gravels, D >= 2)
|
| -
|-
|Critical Shields number (Gravels, D >= 2)
|
| -
|-
|Channel-forming number for gravel-bed stream (Gravels, D >= 2)
|
| -
|-
|}
|}


= Etc. tab header =
= About =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
!Parameter!!Description!!Unit
|-valign="top"
|width="20%"|Model name
|width="60%"|name of the model
|width="20%"| -
|-
|Author name
|name of the model author
| -
|-
|}
<headertabs/>
<headertabs/>
</div>


==Uses ports==
==Uses ports==
Line 53: Line 169:


==Main equations==
==Main equations==
<span class="remove_this_tag">A list of the key equations. HTML format is supported; latex format will be supported in the future</span>
* Exner equation
 
::::{|
|width=500px|<math> \left ( 1 - \lambda_{p} \right ) {\frac{\partial \eta}{\partial t}} = - \Omega {\frac{I_{f} \left ( 1 + \Lambda \right )}{B_{f}}} {\frac{\partial Q_{tbf}}{\partial x}} </math>
|width=50px align="right"|(1)
|}
* Relation for sediment transport
1) Dimensionless bankfull width
::::{|
|width=500px|<math> \hat{B} = {\frac{C_{f}}{\alpha_{EH} \left ( \tau_{form}^* \right ) ^ \left (2.5 \right )}} \hat{Q}_{t} </math>
|width=50px align="right"|(2)
|}
2) Down-channel bed slope
::::{|
|width=500px|<math> S = {\frac{R^ \left ({\frac{3}{2}}\right ) C_{f}^ \left ({\frac{1}{2}}\right )}{\alpha_{EH} \tau_{form}^*}} {\frac{\hat{Q}_{t}}{\hat{Q}}} </math>
|width=50px align="right"|(3)
|}
3) Dimensionless bankfull depth
::::{|
|width=500px|<math> \hat{H} = {\frac{\alpha_{EH} \left ( \tau_{form} \right )^2}{\left ( R C_{f} \right ) ^\left ({\frac{1}{2}}\right )}}{\frac{\hat{Q}}{\hat{Q}_{t}}} </math>
|width=50px align="right"|(4)
|}
4) Total volume bed material load at bankfull flow
::::{|
|width=500px|<math> Q_{tbf} = {\frac{\alpha_{EH} \tau_{form}^*}{R C_{f} ^ \left ({\frac{1}{2}}\right )}} Q_{bf} S </math>
|width=50px align="right"|(5)
|}
5) Reduction of the Exner equation
::::{|
|width=500px|<math> {\frac{\partial \eta}{\partial t}} = \kappa_{d}{\frac{\partial ^2 \eta}{\partial x^2}} </math>
|width=50px align="right"|(6)
|}
6) Kinematic sediment diffusivity
::::{|
|width=500px|<math> \kappa_{d} = {\frac{I_{f} \Omega \left ( 1 + \Lambda \right )}{\left ( 1 - \lambda_{p}\right ) B_{f}}} {\frac{\alpha _{EH} \tau_{form}^* Q_{bf}}{R C_{f}^\left ({\frac{1}{2}}\right )}} </math>
|width=50px align="right"|(7)
|}
* Bed elevation
::::{|
|width=500px|<math> \eta = \xi_{do} + \xi_{d} t + \eta_{dev} \left (x, t \right ) </math>
|width=50px align="right"|(8)
|}
* Steady-State aggradation in response to sea level rise condition
::::{|
|width=500px|<math> \hat{x} = {\frac{x}{L}} </math>
|width=50px align="right"|(9)
|}
::::{|
|width=500px|<math> \hat{\eta} = {\frac{\eta_{dev}}{L}} </math>
|width=50px align="right"|(10)
|}
::::{|
|width=500px|<math> {\frac{Q_{tbf}}{Q_{tbf,feed}}} = {\frac{S}{S_{u}}} = 1 - \beta \hat{x} </math>
|width=50px align="right"|(11)
|}
::::{|
|width=500px|<math> \beta = {\frac{\left ( 1 - \lambda_{p}\right ) B_{f} \xi_{d} L}{I_{f} \Omega \left ( 1 + \Lambda \right ) Q_{tbf,feed}}} = {\frac{G_{fill}}{G_{feed}}} </math>
|width=50px align="right"|(12)
|}
1) Sediment delivery rate
::::{|
|width=500px|<math> Q_{tbf} = Q_{tbf,feed} - {\frac{\left (1 - \lambda_{p} \right ) B_{f}}{I_{f} \Omega \left ( 1 + \Omega \right )}} \xi_{d} X </math>
|width=50px align="right"|(13)
|}
2)Upstream slope at x = 0
::::{|
|width=500px|<math> S_{u} = {\frac{R C_{f}^\left ({\frac{1}{2}}\right )}{\alpha_{EH} \tau_{form}^*}} {\frac{Q_{tbf,feed}}{Q_{bf}}} </math>
|width=50px align="right"|(14)
|}
3) Elevation profile
::::{|
|width=500px|<math> \hat{\eta} = S_{u} [\left ( 1 - {\frac{1}{2}} \beta \right ) - \hat{x} + {\frac{1}{2}} \beta \hat{x}^2] </math>
|width=50px align="right"|(15)
|}
* Mean annual rate available for deposition
::::{|
|width=500px|<math> G_{feed} = \left ( 1 + \Lambda \right ) G_{t,feed} = \left ( 1 + \Lambda \right ) \left ( R + 1 \right ) Q_{tbf,feed} I_{f} </math>
|width=50px align="right"|(16)
|}
* Amount of sediment required to fill a reach at a uniform aggradation rate
::::{|
|width=500px|<math> G_{fill} = \left ( R + 1 \right ) \left ( 1 - \lambda_{p} \right ) B_{f} L_{v} \xi_{d} </math>
|width=50px align="right"|(17)
|}
* Morphodynamics of the approach to steady-state response to rising sea level
1) Governing partial differential equation
::::{|
|width=500px|<math> {\frac{\partial \eta_{dev}}{\partial t}} + \dot{\xi}_{d} = \kappa_{d} {\frac{\partial ^2 \eta_{dev}}{\partial x^2}} </math>
|width=50px align="right"|(18)
|}
2) Boundary conditions
::::{|
|width=500px|<math> - {\frac{\partial \eta_{dev}}{\partial x}} = S_{u} = {\frac{R C_{f}^ \left ({\frac{1}{2}}\right )}{\alpha_{EH} \tau_{form}^*}} {\frac{Q_{tbf,feed}}{Q_{bf}}} </math>
|width=50px align="right"|(19)
|}
::::{|
|width=500px|<math> \eta_{dev} \left (L, t \right ) = 0 </math>
|width=50px align="right"|(20)
|}
3) Initial condition
::::{|
|width=500px|<math> \eta_{dev} \left (x,0\right ) = \eta_{dev,I}\left (x\right ) </math>
|width=50px align="right"|(21)
|}


<div class="NavFrame collapsed" style="text-align:left">
<div class="NavFrame collapsed" style="text-align:left">
Line 63: Line 280:
|-
|-
| Q<sub>bf</sub>
| Q<sub>bf</sub>
| flood discharge
| flood of volume wash load per unit width
| m<sup>3</sup> / s
| L<sup>3</sup> / T
|-
| Q<sub>tbf</sub>
| total volume bed material load at bankfull flow
| L<sup>3</sup> / T
|-
|-
| Q<sub>tbf,feed</sub>
| Q<sub>tbf,feed</sub>
| upstream bed material sediment feed rate during flood
| upstream bed material sediment feed rate during flood
| m<sup>3</sup> / s
| L<sup>3</sup> / T
|-
|-
| Λ
| Λ
Line 80: Line 301:
| D
| D
| grain size of bed material
| grain size of bed material
| mm
| L
|-
|-
| R
| R
Line 88: Line 309:
| L
| L
| reach length (downchannel distance)
| reach length (downchannel distance)
| m
| L
|-
|-
| B<sub>f</sub>
| B<sub>f</sub>
| floodplain width
| floodplain width
| m
| L
|-
|-
| Ω
| Ω
Line 112: Line 333:
| dη<sub>d</sub> / dt
| dη<sub>d</sub> / dt
| rate of rise of downstream base level (should be positive)
| rate of rise of downstream base level (should be positive)
| mm / year
| L / T
|-
|-
| M
| M
Line 118: Line 339:
| -
| -
|-
|-
| Δ<sub>x</sub>
| Δx
| spatial step
| spatial step
| m
| L
|-
|-
| Δ<sub>t</sub>
| Δt
| time step
| time step
| year
| T
|-   
|-   
| Mtoprint
| Mtoprint
Line 133: Line 354:
| number of printouts
| number of printouts
| -
| -
|-
|-  
| e
| rate of downstream base level rise
| L / T
|-
| p
| number of prints
| -
|-
| i
| number of iterations per print
| -
|-
| t
| time step
| T
|-
| y
| year the base level change begins
| T
|-
| Y
| year the base level change ends
| T
|-
| a
| coefficient in the Engelund-Hansen 1967 load relation
| -
|-
| n
| exponent in the Engelund-Hansen 1967 load relation
| -
|-
| T
| channel-forming Shields number for sand-bed streams
| -
|-
| P
| coefficient in the Parker 1979 load relation
| -
|-
| N
| exponent in the Parker 1979 load relation
| -
|-
| c
| critical Shield number
| -
|-
| G
| channel-forming Shields number for gravel-bed streams
| -
|-
| x
| downstream coordinate
| L
|-
| H<sub>bf</sub>
| bankfull water depth
| L
|-
| B<sub>bf</sub>
| bankfull channel width
| L
|-
| η
| bed surface elevation
| L
|-
| Sl
| bed surface slope
| -
|-
| q<sub>bT</sub>
| volume bedload transport per unit width
| L<sup>2</sup> / T
|-
| B^
| dimensionless bankfull width
| -
|-
| Q^
| dimensionless flow discharge
| -
|-
| Q^<sub>t</sub>
| dimensionless total volume bed material load
| -
|-
| H^
| dimensionless bankfull depth
| -
|-
| C<sub>f</sub>
| bed friction coefficient
| -
|-
| α<sub>EH</sub>
| parameter for the Engelund-Hansen relation, equals to 0.05
| -
|-
| τ<sub>form</sub> <sup>*</sup>
| Channel-forming Shields number
| -
|-
| S
| down-channel bed slope
| -
|-
| κ<sub>d</sub>
| kinematic sediment diffusivity
| -
|-
| ξ<sub>do</sub>
| sea level elevation at time t = 0
| -
|-
| ξ<sub>d</sub>
| aggradating rate of river bed
| -
|-
| η<sub>dev</sub>
| downstream elevation deviation
| -
|-
| x^
| dimensionless down-channel coordinate
| -
|-
| β
| user-defined parameter
| -
|-
| S<sub>u</sub>
| upstream slope at x = 0
| -
|-
| η^
| dimensionless bed surface elevation
| -
|-
| G<sub>feed</sub>
| mean annual rate of bed material load available for deposition (include wash load)
| -
|-
| G<sub>t,feed</sub>
| mean annual feed rate of bed material load available for deposition in the reach
| -
|-
| L<sub>V</sub>
| valley length
| -
|-
| G<sub>fill</sub>
| Amount of sediment required to fill a reach at a uniform aggradation rate
| -
|-
| G<sub>feed</sub>
| Mean annual rate available for deposition
| -
|-
|}
|}


Line 140: Line 521:
!Symbol!!Description!!Unit
!Symbol!!Description!!Unit
|-
|-
| C<sub>f</sub>
| τ<sub>form</sub> <sup>*</sup>
| friction coefficient
| -
|-
| τ<sub>form</sub> ^*
| channel-forming Shields number
| channel-forming Shields number
| -
| -
Line 150: Line 527:
| H<sub>n</sub>
| H<sub>n</sub>
| normal depth at given Q<sub>bf</sub> and Q<sub>tbf,feed</sub>
| normal depth at given Q<sub>bf</sub> and Q<sub>tbf,feed</sub>
| m
| L
|-
|-
| S<sub>n</sub>
| S<sub>n</sub>
Line 168: Line 545:
</div>
</div>
==Notes==
==Notes==
<span class="remove_this_tag">Any notes, comments, you want to share with the user</span>  
This program is a companion to the program SteadyStateAg, which computes the steady-state aggradation of a river with a specified base level rise at the downstream end. This program computes the time evolution toward steady-state aggradation.
 
The calculation assumes a specified, constant Chezy resistance coefficient Cz and floodplain width Bf. The sediment is assumed to be uniform with size D. All sediment transport is assumed to occur in a specified fraction of time during which the river is in flood, specified by an intermittency.  The flow is computed using the normal flow approximation. The reach has downchannel length L, and base level is allowed to rise at a specified rate at the downstream end. It is assumed that for every unit of sand deposited in the channel/floodplain system in response to sea level rise, Λ units of wash load are deposited, where Λ is a specified constant that might range from 0 to 3 or higher, and that the supply of wash load from upstream is always sufficient for deposition at such a rate. Besides, it is assumed that the porosity of the floodplain deposits is equal to that of the channel deposits. In fact the floodplain deposits are likely to have a lower porosity.
 
In the equations, is if β > 1 then the there is not enough sediment feed over the reach to fill the space created by sea level rise, and the sediment transport rate must drop to zero before the shoreline is reached.  If β < 1 the excess sediment is delivered to the sea. If for a given rate of sea level rise ξ<sub>d</sub> it is found that β > 1 for reasonable values of reach length L, floodplain width Bf and sediment feed rate Gfeed, no steady state solution exists for that rate of sea level rise.


<span class="remove_this_tag">Numerical scheme</span>
* Note on model running
For the characteristic grain size, a value of < 2 mm will use the Engelund-Hansen relation, whereas ≥ 2 mm will use the Parker relation.


Due to the evolution that is occurring in time, the GetData function has been included in this function, and works the same way as in the AgDeg programs.


==Examples==
==Examples==
Line 177: Line 560:


<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
* <span class="remove_this_tag">Upload file: http://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Upload file: https://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>


Line 186: Line 569:


==References==
==References==
<span class="remove_this_tag">Key papers</span>
* Bard, E., Hamelin, B., and Fairbanks, R.G., 1990, U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years, Nature 346, 456-458.Doi [[http://dx.doi.org/10.1038/346456a0 10.1038/346456a0]]
 
* Fisk, H.N., 1944, Geological investigations of the alluvial valley of the lower Mississippi River, Report,  U.S. Army Corp of Engineers, Mississippi River Commission, Vicksburg, MS.
 
* Pirmez, C., 1994, Growth of a Submarine meandering channel-levee system on Amazon Fan, Ph.D. thesis, Columbia University, New York, 587 p.
 
* Paola, C., P. L. Heller and C. L. Angevine, 1992, The large-scale dynamics of grain-size variation in alluvial basins.  I: Theory, Basin Research, 4, 73-90.
 
* Parker, G., and Y. Cui, 1998, The arrested gravel front: stable gravel-sand transitions in rivers.  Part 1: Simplified analytical solution, Journal of Hydraulic Research, 36(1): 75-100.
 
* Parker, G., Paola, P., Whipple, K. and Mohrig, D., 1998, Alluvial fans formed by channelized fluvial and sheet flow: theory, Journal of Hydraulic Engineering, 124(10), pp. 1-11. Doi: [[http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:10(985) 10.1061/(ASCE)0733-9429(1998)124:10(985)]]
 
* Sinha, S. K. and Parker, G., 1996, Causes of concavity in longitudinal profiles of rivers, Water Resources Research 32(5),1417-1428. Doi: [[http://dx.doi.org/10.1029/95WR03819 10.1029/95WR03819]]
 
* USCOE, 1935., Studies of river bed materials and their movement, with special reference to the lower Mississippi River,  Paper 17 of the U.S. Waterways Experiment Station, Vicksburg, MS.
 
* Yatsu, E., 1955, On the longitudinal profile of the graded river, Transactions, American Geophysical Union, 36: 655-663.


==Links==
==Links==
[[http://csdms.colorado.edu/wiki/Model:RiverWFRisingBaseLevelNormal Model:RiverWFRisingBaseLevelNormal]]
[[Model:RiverWFRisingBaseLevelNormal]]


[[Category:Utility components]]
[[Category:Utility components]]

Latest revision as of 17:18, 19 February 2018

The CSDMS Help System

RiverWFRisingBaseLevelNormal

This model is a calculator for disequilibrium aggradation of a sand-bed river in response to rising base level.

Model introduction

This program uses a Chézy formulation and either the Engelund-Hansen relation for bedload in sandy streams or the Parker relation for bedload in gravel bed streams assuming a uniform grain size to solve for the bed evolution, width evolution, and depth evolution in time and space.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
Flood discharge m3 / s
upstream bed material sediment feed rate during flood (q) m3 / m
Units of wash load deposited in the fan per unit bed material load deposited -
Intermittency flood intermittency -
Grain size of bed material mm
Submerged specific gravity of sediment -
Floodplain width m
Channel sinuosity -
Bed porosity -
Chezy resistance coefficient coefficient in the Chezy relation -
Initial fluvial slope -
Rate of rise of downstream base level mm/year
Number of intervals
Number of prints desired -
Number of iterations per print -
Time step yr
Year base level change starts yr
Year base level change steps yr
Coefficient in the Engelund-Hansen 1967 load relation (sand, D < 2) -
Exponent in the Engelund-Hansen 1967 load relation (sand, D < 2) -
Channel-forming Shields number for sand-bed streams (sands, D < 2) -
Coefficient in the Parker 1979 load relation (Gravels, D>=2) -
Exponent in the Parker 1967 load relation (Gravels, D >= 2) -
Critical Shields number (Gravels, D >= 2) -
Channel-forming number for gravel-bed stream (Gravels, D >= 2) -
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Exner equation
[math]\displaystyle{ \left ( 1 - \lambda_{p} \right ) {\frac{\partial \eta}{\partial t}} = - \Omega {\frac{I_{f} \left ( 1 + \Lambda \right )}{B_{f}}} {\frac{\partial Q_{tbf}}{\partial x}} }[/math] (1)
  • Relation for sediment transport

1) Dimensionless bankfull width

[math]\displaystyle{ \hat{B} = {\frac{C_{f}}{\alpha_{EH} \left ( \tau_{form}^* \right ) ^ \left (2.5 \right )}} \hat{Q}_{t} }[/math] (2)

2) Down-channel bed slope

[math]\displaystyle{ S = {\frac{R^ \left ({\frac{3}{2}}\right ) C_{f}^ \left ({\frac{1}{2}}\right )}{\alpha_{EH} \tau_{form}^*}} {\frac{\hat{Q}_{t}}{\hat{Q}}} }[/math] (3)

3) Dimensionless bankfull depth

[math]\displaystyle{ \hat{H} = {\frac{\alpha_{EH} \left ( \tau_{form} \right )^2}{\left ( R C_{f} \right ) ^\left ({\frac{1}{2}}\right )}}{\frac{\hat{Q}}{\hat{Q}_{t}}} }[/math] (4)

4) Total volume bed material load at bankfull flow

[math]\displaystyle{ Q_{tbf} = {\frac{\alpha_{EH} \tau_{form}^*}{R C_{f} ^ \left ({\frac{1}{2}}\right )}} Q_{bf} S }[/math] (5)

5) Reduction of the Exner equation

[math]\displaystyle{ {\frac{\partial \eta}{\partial t}} = \kappa_{d}{\frac{\partial ^2 \eta}{\partial x^2}} }[/math] (6)

6) Kinematic sediment diffusivity

[math]\displaystyle{ \kappa_{d} = {\frac{I_{f} \Omega \left ( 1 + \Lambda \right )}{\left ( 1 - \lambda_{p}\right ) B_{f}}} {\frac{\alpha _{EH} \tau_{form}^* Q_{bf}}{R C_{f}^\left ({\frac{1}{2}}\right )}} }[/math] (7)
  • Bed elevation
[math]\displaystyle{ \eta = \xi_{do} + \xi_{d} t + \eta_{dev} \left (x, t \right ) }[/math] (8)
  • Steady-State aggradation in response to sea level rise condition
[math]\displaystyle{ \hat{x} = {\frac{x}{L}} }[/math] (9)
[math]\displaystyle{ \hat{\eta} = {\frac{\eta_{dev}}{L}} }[/math] (10)
[math]\displaystyle{ {\frac{Q_{tbf}}{Q_{tbf,feed}}} = {\frac{S}{S_{u}}} = 1 - \beta \hat{x} }[/math] (11)
[math]\displaystyle{ \beta = {\frac{\left ( 1 - \lambda_{p}\right ) B_{f} \xi_{d} L}{I_{f} \Omega \left ( 1 + \Lambda \right ) Q_{tbf,feed}}} = {\frac{G_{fill}}{G_{feed}}} }[/math] (12)

1) Sediment delivery rate

[math]\displaystyle{ Q_{tbf} = Q_{tbf,feed} - {\frac{\left (1 - \lambda_{p} \right ) B_{f}}{I_{f} \Omega \left ( 1 + \Omega \right )}} \xi_{d} X }[/math] (13)

2)Upstream slope at x = 0

[math]\displaystyle{ S_{u} = {\frac{R C_{f}^\left ({\frac{1}{2}}\right )}{\alpha_{EH} \tau_{form}^*}} {\frac{Q_{tbf,feed}}{Q_{bf}}} }[/math] (14)

3) Elevation profile

[math]\displaystyle{ \hat{\eta} = S_{u} [\left ( 1 - {\frac{1}{2}} \beta \right ) - \hat{x} + {\frac{1}{2}} \beta \hat{x}^2] }[/math] (15)
  • Mean annual rate available for deposition
[math]\displaystyle{ G_{feed} = \left ( 1 + \Lambda \right ) G_{t,feed} = \left ( 1 + \Lambda \right ) \left ( R + 1 \right ) Q_{tbf,feed} I_{f} }[/math] (16)
  • Amount of sediment required to fill a reach at a uniform aggradation rate
[math]\displaystyle{ G_{fill} = \left ( R + 1 \right ) \left ( 1 - \lambda_{p} \right ) B_{f} L_{v} \xi_{d} }[/math] (17)
  • Morphodynamics of the approach to steady-state response to rising sea level

1) Governing partial differential equation

[math]\displaystyle{ {\frac{\partial \eta_{dev}}{\partial t}} + \dot{\xi}_{d} = \kappa_{d} {\frac{\partial ^2 \eta_{dev}}{\partial x^2}} }[/math] (18)

2) Boundary conditions

[math]\displaystyle{ - {\frac{\partial \eta_{dev}}{\partial x}} = S_{u} = {\frac{R C_{f}^ \left ({\frac{1}{2}}\right )}{\alpha_{EH} \tau_{form}^*}} {\frac{Q_{tbf,feed}}{Q_{bf}}} }[/math] (19)
[math]\displaystyle{ \eta_{dev} \left (L, t \right ) = 0 }[/math] (20)

3) Initial condition

[math]\displaystyle{ \eta_{dev} \left (x,0\right ) = \eta_{dev,I}\left (x\right ) }[/math] (21)

Notes

This program is a companion to the program SteadyStateAg, which computes the steady-state aggradation of a river with a specified base level rise at the downstream end. This program computes the time evolution toward steady-state aggradation.

The calculation assumes a specified, constant Chezy resistance coefficient Cz and floodplain width Bf. The sediment is assumed to be uniform with size D. All sediment transport is assumed to occur in a specified fraction of time during which the river is in flood, specified by an intermittency. The flow is computed using the normal flow approximation. The reach has downchannel length L, and base level is allowed to rise at a specified rate at the downstream end. It is assumed that for every unit of sand deposited in the channel/floodplain system in response to sea level rise, Λ units of wash load are deposited, where Λ is a specified constant that might range from 0 to 3 or higher, and that the supply of wash load from upstream is always sufficient for deposition at such a rate. Besides, it is assumed that the porosity of the floodplain deposits is equal to that of the channel deposits. In fact the floodplain deposits are likely to have a lower porosity.

In the equations, is if β > 1 then the there is not enough sediment feed over the reach to fill the space created by sea level rise, and the sediment transport rate must drop to zero before the shoreline is reached. If β < 1 the excess sediment is delivered to the sea. If for a given rate of sea level rise ξd it is found that β > 1 for reasonable values of reach length L, floodplain width Bf and sediment feed rate Gfeed, no steady state solution exists for that rate of sea level rise.

  • Note on model running

For the characteristic grain size, a value of < 2 mm will use the Engelund-Hansen relation, whereas ≥ 2 mm will use the Parker relation.

Due to the evolution that is occurring in time, the GetData function has been included in this function, and works the same way as in the AgDeg programs.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Bard, E., Hamelin, B., and Fairbanks, R.G., 1990, U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years, Nature 346, 456-458.Doi [10.1038/346456a0]
  • Fisk, H.N., 1944, Geological investigations of the alluvial valley of the lower Mississippi River, Report, U.S. Army Corp of Engineers, Mississippi River Commission, Vicksburg, MS.
  • Pirmez, C., 1994, Growth of a Submarine meandering channel-levee system on Amazon Fan, Ph.D. thesis, Columbia University, New York, 587 p.
  • Paola, C., P. L. Heller and C. L. Angevine, 1992, The large-scale dynamics of grain-size variation in alluvial basins. I: Theory, Basin Research, 4, 73-90.
  • Parker, G., and Y. Cui, 1998, The arrested gravel front: stable gravel-sand transitions in rivers. Part 1: Simplified analytical solution, Journal of Hydraulic Research, 36(1): 75-100.
  • Parker, G., Paola, P., Whipple, K. and Mohrig, D., 1998, Alluvial fans formed by channelized fluvial and sheet flow: theory, Journal of Hydraulic Engineering, 124(10), pp. 1-11. Doi: [10.1061/(ASCE)0733-9429(1998)124:10(985)]
  • Sinha, S. K. and Parker, G., 1996, Causes of concavity in longitudinal profiles of rivers, Water Resources Research 32(5),1417-1428. Doi: [10.1029/95WR03819]
  • USCOE, 1935., Studies of river bed materials and their movement, with special reference to the lower Mississippi River, Paper 17 of the U.S. Waterways Experiment Station, Vicksburg, MS.
  • Yatsu, E., 1955, On the longitudinal profile of the graded river, Transactions, American Geophysical Union, 36: 655-663.

Links

Model:RiverWFRisingBaseLevelNormal