Model help:BackwaterWrightParker: Difference between revisions

From CSDMS
No edit summary
m (Text replacement - "http://csdms.colorado.edu/wiki/" to "https://csdms.colorado.edu/wiki/")
 
(11 intermediate revisions by 2 users not shown)
Line 3: Line 3:
1) Log in to the wiki
1) Log in to the wiki
2) Create a new page for each model, by using the following URL:
2) Create a new page for each model, by using the following URL:
   * http://csdms.colorado.edu/wiki/Model help:<modelname>
   * https://csdms.colorado.edu/wiki/Model help:<modelname>
   * Replace <modelname> with the name of a model
   * Replace <modelname> with the name of a model
3) Than follow the link "edit this page"
3) Than follow the link "edit this page"
Line 21: Line 21:
<div id=CMT_MODEL_PARAMETERS>
<div id=CMT_MODEL_PARAMETERS>
==Model parameters==
==Model parameters==
= First tab header =
= Input files and directories =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|Input directory
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|Path to input file
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"|
|-
|Site prefix
|site prefix for Input/Output files
| -
|-
|Case prefix
|Case prefix for Input/Output files
| -
|-
|}
|}


= Second tab header =
= Run Parameters =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|bed slope
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"| -
|-
|Submerged specific gravity of sediment
|
| -
|-
|Median grain size (D50)
|
| -
|-
|Grain size such that 90% passes (D90)
| grain diameter such that 90% of the distribution is finer
| mm
|-
|channel width (B)
|
| m
|-
|flow discharge (Q)
|
| m<sup>3</sup> / s
|-
|downstream water surface elevation (k)
|
| m
|-
|reach length (L)
|
| m
|-
|number of spatial nodes (max of 99)
|
| -
|-
|}
|}


= Etc. tab header =
= About =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
!Parameter!!Description!!Unit
|-valign="top"
|width="20%"|Model name
|width="60%"|name of the model
|width="20%"| -
|-
|Author name
|Name of the model author
| -
|-
|Median grain size (D50)
|
| -
|-
|}
<headertabs/>
<headertabs/>
</div>


==Uses ports==
==Uses ports==
Line 52: Line 110:


==Main equations==
==Main equations==
<span class="remove_this_tag">A list of the key equations. HTML format is supported; latex format will be supported in the future</span>
* Exner equation of sediment continuity
::::{|
|width=800px|<math> \left ( 1 - \lambda_{p} \right ) = - I_{f} {\frac{\partial q_{t}}{\partial x}} = - I_{f}{\frac{\partial q_{b}}{\partial x}} - I_{f} {\frac{\partial q_{s}}{\partial x}}  </math>
|width=50p=x align="right"|(1)
|}
* Bedload transport in sand-bed streams (Ashida and Michiue, 1972)
::::{|
|width=800px|<math> \tau_{s}^* = {\frac{\tau_{bs}}{\rho R g D_{s50}}}  </math>
|width=50p=x align="right"|(2)
|}
::::{|
|width=800px|<math> q_{b}^* = {\frac{q_{b}}{\sqrt{R g D_{s50} D_{s50}}}} = 17 \left ( \tau_{s}^* - \tau_{c}^* \right ) \left ( \sqrt{\tau_{s}^*} - \sqrt{\tau_{c}^*} \right ) </math>
|width=50p=x align="right"|(3)
|}
* Entrainment of sand into suspension (Wright and Parker, 2004)
::::{|
|width=800px|<math> E = {\frac{A Z_{u}^5}{1 + {\frac{A}{0.3}} Z_{u}^5}} </math>
|width=50p=x align="right"|(4)
|}
::::{|
|width=800px|<math> Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p}^\left (0.6\right ) S_{f}^ \left (0.07\right ) </math>
|width=50p=x align="right"|(5)
|}
::::{|
|width=800px|<math> u_{*s} = \sqrt{{\frac{\tau_{bs}}{\rho}}} </math>
|width=50p=x align="right"|(6)
|}
::::{|
|width=800px|<math> Re_{p} = {\frac{\sqrt{R g D_{s50}} D_{s50}}{\nu}} </math>
|width=50p=x align="right"|(7)
|}
* Suspended sediment transport rate (Wright-Parker formulation)
::::{|
|width=800px|<math> u_{*} = \left ( g H S_{f} \right )^ \left ({\frac{1}{2}}\right ) </math>
|width=50p=x align="right"|(8)
|}
::::{|
|width=800px|<math> u_{*s} = \left ( g H_{s} S_{f} \right )^ \left ({\frac{1}{2}}\right ) </math>
|width=50p=x align="right"|(9)
|}
::::{|
|width=800px|<math> C_{z} = {\frac{U}{u_{*}}} </math>
|width=50p=x align="right"|(10)
|}
::::{|
|width=800px|<math> k_{c} = 11 {\frac{H}{exp \left ( \kappa C_{z} \right )}} </math>
|width=50p=x align="right"|(11)
|}
::::{|
|width=800px|<math> q_{s} = {\frac{E u_{*} H}{\kappa}} I \left ( {\frac{u_{*}}{v_{s}}}, {\frac{H}{k_{c}}}, \zeta_{b} \right ) </math>
|width=50p=x align="right"|(12)
|}
::::{|
|width=800px|<math> I \left ( {\frac{u_{*}}{v_{s}}}, {\frac{H}{k_{c}}}, \zeta_{b} \right ) = \int_{\zeta_{b}}^1 [{\frac{\left (1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta_{b}\right ) / \zeta_{b}}}]^ \left ({\frac{v_{s}}{\kappa u_{*}}} \right ) ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right) d \zeta </math>
|width=50p=x align="right"|(13)
|}
* Gradually varied flow in sand-bed rivers including the effect of bedforms
1) Backwater equation
::::{|
|width=800px|<math> {\frac{dH}{dx}} = {\frac{S - S_{f}}{1 - Fr^2}} </math>
|width=50p=x align="right"|(14)
|}
2) Froude number
::::{|
|width=800px|<math> Fr = {\frac{q_{w}}{g^ \left ({\frac{1}{2}}\right ) H^ \left ( {\frac{3}{2}}\right )}} </math>
|width=50p=x align="right"|(15)
|}
3) Friction slope
::::{|
|width=800px|<math> S_{f} = C_{f} {\frac{U^2}{g H}} = {\frac{\tau_{b}}{\rho g H}} = \phi_{s}^ \left ({\frac{-4}{3}}\right ) S_{nom}</math>
|width=50p=x align="right"|(16)
|}
4) boundary shear stress in a sand-bed river
::::{|
|width=800px|<math> \tau_{b} = \tau_{bs} + \tau_{bf} = \rho \left ( C_{fs} + C_{ff} \right ) U^2 </math>
|width=50p=x align="right"|(17)
|}
5) boundary depth in a sand-bed river
::::{|
|width=800px|<math> H = H_{s} + H_{f} </math>
|width=50p=x align="right"|(18)
|}
6) friction coefficient due to skin friction
::::{|
|width=800px|<math> C_{fs}^ \left ({\frac{-1}{2}}\right ) = {\frac{q_{w}}{H \sqrt{g H_{s} S_{f}}}} = 8.32 \left ({\frac{H_{s}}{3D_{s90}}}\right )^ \left ({\frac{1}{6}}\right ) </math>
|width=50p=x align="right"|(19)
|}
7) Shields number due to form drag
::::{|
|width=800px|<math> \tau_{s}^* = {\frac{H_{s} S_{f}}{R D_{50}}} = \left\{\begin{matrix} 0.05 + 0.7 \left (\tau^* Fr^ \left (0.7\right ) \right )^ \left (0.8\right ) & \tau^* >= \tau_{min}^* \\ \tau^* & \tau^* < \tau_{min}^*\end{matrix}\right. </math>
|width=50p=x align="right"|(20)
|}
8) Shields number
::::{|
|width=800px|<math> \tau^* = {\frac{H S_{f}}{R D_{s50}}} </math>
|width=50p=x align="right"|(21)
|}
* Bed shear stress due to skin friction to total bed shear stress
::::{|
|width=800px|<math> \phi = \left\{\begin{matrix} {\frac{0.05 + 0.7 \left ( \tau^* Fr ^ \left (0.7\right ) \right ) ^ \left (0.8\right )}{\tau^*}} & \tau^* >=\tau_{min}^* \\ 1 & \tau^* < \tau_{min}^* \end{matrix}\right. </math>
|width=50p=x align="right"|(22)
|}
* Minimum Shields number
::::{|
|width=800px|<math> \tau_{min}^* = 0.05 + 0.7 \left ( \tau_{min}^* Fr^ \left (0.7\right ) \right ) ^ \left (0.8\right ) </math>
|width=50p=x align="right"|(23)
|}
* Calculation of H<sub>s</sub> and S<sub>f</sub> from known depth H
::::{|
|width=800px|<math> F \left (\phi_{s} \right ) = \left\{\begin{matrix} \phi_{s} - [{\frac{\phi_{s}^ \left ({\frac{-1}{3}}\right ) \tau_{nom}^* - 0.05}{0.7 \left ( \tau_{nom}^* \right ) ^ \left ({\frac{4}{5}}\right ) Fr^ \left ({\frac{14}{25}}\right )}}]^ \left ({\frac{-15}{16}}\right ) & \phi_{s} <= \left (\tau_{nom}^* / \tau_{min}^* \right )^ \left ({\frac{3}{4}}\right ) \\ \tau_{s} - 1 & \tau_{s} > \left ( \tau_{nom}^* / \tau_{min}^* \right) ^ \left ({\frac{3}{4}}\right )\end{matrix}\right. = 0 </math>
|width=50p=x align="right"|(24)
|}
* Calculation of the normal flow condition prevailing in the absence of the dredge slot
::::{|
|width=800px|<math> S_{f} = S </math>
|width=50p=x align="right"|(25)
|}
::::{|
|width=800px|<math> F_{N} \left (H\right ) = \left\{\begin{matrix} H \phi_{s} \left (H\right ) - {\frac{R D_{50}}{S}}[0.05 + 0.7 \left ({\frac{H S}{R D_{s50}}}\right )^ \left ({\frac{4}{5}}\right )\left ({\frac{q_{w}}{\sqrt{g}H^ \left ({\frac{3}{2}}\right )}}\right )^ \left ({\frac{14}{25}}\right )] & H >= {\frac{R D_{50} \tau_{min}^*}{S}} \\ H \phi_{s} \left (H\right ) - H & H < {\frac{R D_{50} \tau_{min}^*}{S}} \end{matrix}\right. = 0  </math>
|width=50p=x align="right"|(26)
|}


<div class="NavFrame collapsed" style="text-align:left">
<div class="NavFrame collapsed" style="text-align:left">
Line 61: Line 239:
|-
|-
| R
| R
| sediment specific gravity, R+1
| sediment specific gravity
| -
| -
|-
|-
| B
| B
| channel width
| channel width
| m
| L
|-
| D<sub>50</sub>
| median grain size (sand)
| L
|-
|-
| D
| D<sub>90</sub>
| grain diameter such that 90% of the distribution is finer
| grain diameter such that 90% of the distribution is finer
| mm
| L
|-
| S
| bed slope
| -
|-
| d
| median grain diameter
| mm
|-
|-
| Q
| Q
| flow discharge
| flow discharge
| m<sup>3</sup> / s
| L<sup>3</sup> / T
|-
| k
| downstream water elevation
| m
|-
|-
| L
| L
| reach length
| reach length
| m
| L
|-
|-
| M
| M
Line 99: Line 269:
| minimum shear stress due to skin friction
| minimum shear stress due to skin friction
|-
|-
|--
| Fr<sub>d</sub>
| downstream Froude number
| -
|-
| λ<sub>p</sub>
| sediment porosity
| -
|-
|-
| η<sub>d</sub>
| I<sub>f</sub>
| downstream water surface elevation
| flood intermittency
| m
| -
|-
| q<sub>t</sub>
| total volume bed material load transport rate per unit width
| L<sup>2</sup> / T
|-
| q<sub>b</sub>
| total volume bedload transport rate per unit width
| L<sup>2</sup> / T
|-
| q<sub>s</sub>
| volume bed material suspended load transport rate per unit width
| L<sup>2</sup> / T
|-
| τ<sub>s</sub> <sup>*</sup>
| Shields number due to form drag
| -
|-
| τ<sub>bs</sub>
| boundary shear stress due to skin friction
| -
|-
| ρ
| water density
| M / L<sup>3</sup>
|-
| g
| acceleration due to gravity
| L / T<sup>2</sup>
|-
| D<sub>s50</sub>
| median size of surface layer sediment
| L
|-
| R
| sediment submerged specific gravity
| -
|-
| q<sub>b</sub> <sup>*</sup>
| Einstein number for bedload transport
| -
|-
| τ<sub>c</sub> <sup>*</sup>
| critical Shields number at the threshold of motion, equals to 0.05
| -
|-
| E
| volume rate of entrainment of bed particles into bedload transport per unit bed area per unit time
| -
|-
| Z<sub>u</sub>
| user-defined variable
| -
|-
| A
| equals to 5.7 * 10<sup>-7</sup>
| -
|-
| u<sub>*s</sub>
| shear velocity due to skin friction
| L / T
|-
| v<sub>s</sub>
| particle terminal fall velocity in quiescent water
| L / T
|-
| ν
| kinematic viscosity of water
| L<sup>2</sup> / T
|-
| S<sub>f</sub>
| down-channel friction slope
| -
|-
| Re<sub>p</sub>
| user-defined variable
| -
|-
| u<sup>*</sup>
| shear velocity
| L / T
|-
| C<sub>z</sub>
| dimensionless Chezy resistance coefficient
| -
|-
| U
| depth-averaged flow velocity
| L / T
|-
| k<sub>c</sub>
| composite roughness height associated with both skin friction and form drag
| L
|-
| κ
| Von Karman constant in logarithmic velocity profile
| -
|-
| H<sub>s</sub>
| depth associated with skin friction
| L
|-
| ζ<sub>b</sub>
| equals to 0.05, in Wright-Parker formulation
| -
|-
| S
| bed slope
| -
|-
|-
| Fr<sub>d</sub>
| Fr
| Froude number
| Froude number
| m
| -
|-
| τ<sub>b</sub>
| boundary shear stress
| -
|-
| τ<sub>bf</sub>
| boundary shear stress due to dunes
| -
|-
| H<sub>f</sub>
| depth associated with dunes
| L
|-
| C<sub>fs</sub>
| friction coefficient due to skin friction
| -
|-
| D<sub>s90</sub>
| sediment size such that 90 % of the material in the surface layer is finer
| -
|-
| τ<sup>*</sup>
| Shields number
| -
|-
| τ<sub>min</sub> <sup>*</sup>
| minimum Shields number
| -
|-
| φ<sub>s</sub>
| ratio of bed shear stress due to skin friction to total bed shear stress
| -
|-
| S<sub>nom</sub>
| equals to S<sub>f</sub> φ<sub>s</sub><sup>-4/3</sup>
| -
|-
|-
|}
| τ<sub>nom</sub> <sup>*</sup>
 
| equals to H S<sub>nom</sub> / R D<sub>s50</sub>
'''Output'''
| -
{| {{Prettytable}} class="wikitable sortable"
!Symbol!!Description!!Unit
|-
|-
| x
| x
| downstream coordinate
| downstream coordinate
| m
| L
|-
| ξ<sub>d</sub>
| downstream water surface elevation, must be larger than the beginning point water surface elevation
| L
|-
|-
| η
| η
| bed surface elevation
| bed surface elevation
| m
| L
|-
| k<sub>si</sub>
| water surface elevation
| m
|-
|-
| H
| H
| flow depth
| flow depth
| m
| L
|-
| C<sub>f</sub>
| bed friction coefficient
| -
|-
| ζ
| dimensionless upward normal coordinate
| -
|-
| C<sub>ff</sub>
| resistance coefficient due to form drag
| -
|-
|-
| H<sub>s</sub>
| q<sub>w</sub>
| flow depth due to skin friction
| water discharge per unit width
| m
| L<sup>2</sup> / T
|-
|-
|}
|}
   </div>
   </div>
</div>
</div>
==Notes==
==Notes==
The program generates a plot of bed and water surface elevations η and ξ versus streamwise distance, as well as a plot of depth H and depth due to skin friction H<sub>s</sub> versus streamwise distance.
In the calculation of φ<sub>s</sub>, a Newton-Raphson iterative scheme solution is implemented. The solution is initiated with some guess φ<sub>s,1</sub>.  The calculation is continued until the relative error is under some acceptable limit. There always seems to be a first guess of φ<sub>s</sub> for which the Newton-Raphson scheme converges.  When τ<sub>nom</sub> <sup>*</sup> is only slightly greater than τ<sub>min</sub> <sup>*</sup> (in which case φ<sub>s</sub> is only slightly less than 1), however, the right initial guess is sometimes hard to find.  For example, the scheme may bounce back and forth between two values of φ<sub>s</sub> without converging, or may yield at some point a negative value of φ<sub>s</sub>. The following technique was adopted to overcome these difficulties:
a) The initial guess for φ<sub>s</sub> is set equal to 0.9.
b) Whenever the iterative scheme yields a negative value of φ<sub>s</sub>, φ<sub>s</sub> is reset to 1.02 and the iterative calculation recommenced.
c) Whenever the calculation does not converge, it is assumed that φ<sub>s</sub> is so close to 1 that it can be set equal to 1.
* Note on input parameters:
* Note on input parameters:


If the minimum shear stress due to skin friction τ<sub>s,min</sub>, calculation bombs at any point the program will end.
If the minimum shear stress due to skin friction τ<sub>s,min</sub>, calculation bombs at any point the program will end.


If the height due to skin friction Hs, calculation bombs, the program will assign the last value in the calculations to Hs.
If the height due to skin friction H<sub>s</sub>, calculation bombs, the program will assign the last value in the calculations to H<sub>s</sub>.


If the H<sub>norm</sub> calculation bombs, the value for H<sub>norm</sub> is not outputted, but this does not affect the other values that are calculated.
If the H<sub>norm</sub> calculation bombs, the value for H<sub>norm</sub> is not outputted, but this does not affect the other values that are calculated.


This program requires a given downstream water water elevation, η<sub>d</sub>, such that Fr<sub>d</sub> < 1, because the flow is assumed subcritical, and the program will alert the user and quit if the condition is not met.
This program requires a given downstream water water elevation, ξ<sub>d</sub>, such that Fr<sub>d</sub> < 1, because the flow is assumed subcritical, and the program will alert the user and quit if the condition is not met.
 
Downstream bed elevation is set equal to 0, so that at normal conditions the downstream water surface elevation ξ<sub>d</sub> = H<sub>n</sub>. The user may then specify a value of ξ<sub>d</sub> that differs from H<sub>n</sub> (as long as the corresponding downstream Froude number is less than unity), and compute the resulting backwater curve.


==Examples==
==Examples==
Line 152: Line 497:


<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
* <span class="remove_this_tag">Upload file: http://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Upload file: https://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>


Line 161: Line 506:


==References==
==References==
* Ashida, K. and M. Michiue, 1972, Study on hydraulic resistance and bedload transport rate in alluvial streams, Transactions, Japan Society of Civil Engineering, 206: 59-69 (in Japanese).
* Wright, S. and G. Parker, 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering, 130(8), 796-805.
* Wright, S. and G. Parker, 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering, 130(8), 796-805.


==Links==
==Links==
<span class="remove_this_tag">Any link, eg. to the model questionnaire, etc.</span>
* [[Model:BackwaterWrightParker]]


[[Category:Modules]] [[Category:Utility components]]
[[Category:Utility components]]

Latest revision as of 17:16, 19 February 2018

The CSDMS Help System

BackwaterWrightParker

This is used to calculate backwater curves in sand-bed streams, including the effects of both skin friction and form drag due to skin friction.

Model introduction

This program calculates backwater curves over a sand-bed stream with a specified spatially constant bed slope S. The calculation uses the hydraulic resistance formulation of Wright and Parker (2004) (without the flow stratification correction), as well as calculating the normal depth.

Model parameters

Parameter Description Unit
Input directory Path to input file
Site prefix site prefix for Input/Output files -
Case prefix Case prefix for Input/Output files -
Parameter Description Unit
bed slope -
Submerged specific gravity of sediment -
Median grain size (D50) -
Grain size such that 90% passes (D90) grain diameter such that 90% of the distribution is finer mm
channel width (B) m
flow discharge (Q) m3 / s
downstream water surface elevation (k) m
reach length (L) m
number of spatial nodes (max of 99) -
Parameter Description Unit
Model name name of the model -
Author name Name of the model author -
Median grain size (D50) -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Exner equation of sediment continuity
[math]\displaystyle{ \left ( 1 - \lambda_{p} \right ) = - I_{f} {\frac{\partial q_{t}}{\partial x}} = - I_{f}{\frac{\partial q_{b}}{\partial x}} - I_{f} {\frac{\partial q_{s}}{\partial x}} }[/math] (1)
  • Bedload transport in sand-bed streams (Ashida and Michiue, 1972)
[math]\displaystyle{ \tau_{s}^* = {\frac{\tau_{bs}}{\rho R g D_{s50}}} }[/math] (2)
[math]\displaystyle{ q_{b}^* = {\frac{q_{b}}{\sqrt{R g D_{s50} D_{s50}}}} = 17 \left ( \tau_{s}^* - \tau_{c}^* \right ) \left ( \sqrt{\tau_{s}^*} - \sqrt{\tau_{c}^*} \right ) }[/math] (3)
  • Entrainment of sand into suspension (Wright and Parker, 2004)
[math]\displaystyle{ E = {\frac{A Z_{u}^5}{1 + {\frac{A}{0.3}} Z_{u}^5}} }[/math] (4)
[math]\displaystyle{ Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p}^\left (0.6\right ) S_{f}^ \left (0.07\right ) }[/math] (5)
[math]\displaystyle{ u_{*s} = \sqrt{{\frac{\tau_{bs}}{\rho}}} }[/math] (6)
[math]\displaystyle{ Re_{p} = {\frac{\sqrt{R g D_{s50}} D_{s50}}{\nu}} }[/math] (7)
  • Suspended sediment transport rate (Wright-Parker formulation)
[math]\displaystyle{ u_{*} = \left ( g H S_{f} \right )^ \left ({\frac{1}{2}}\right ) }[/math] (8)
[math]\displaystyle{ u_{*s} = \left ( g H_{s} S_{f} \right )^ \left ({\frac{1}{2}}\right ) }[/math] (9)
[math]\displaystyle{ C_{z} = {\frac{U}{u_{*}}} }[/math] (10)
[math]\displaystyle{ k_{c} = 11 {\frac{H}{exp \left ( \kappa C_{z} \right )}} }[/math] (11)
[math]\displaystyle{ q_{s} = {\frac{E u_{*} H}{\kappa}} I \left ( {\frac{u_{*}}{v_{s}}}, {\frac{H}{k_{c}}}, \zeta_{b} \right ) }[/math] (12)
[math]\displaystyle{ I \left ( {\frac{u_{*}}{v_{s}}}, {\frac{H}{k_{c}}}, \zeta_{b} \right ) = \int_{\zeta_{b}}^1 [{\frac{\left (1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta_{b}\right ) / \zeta_{b}}}]^ \left ({\frac{v_{s}}{\kappa u_{*}}} \right ) ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right) d \zeta }[/math] (13)
  • Gradually varied flow in sand-bed rivers including the effect of bedforms

1) Backwater equation

[math]\displaystyle{ {\frac{dH}{dx}} = {\frac{S - S_{f}}{1 - Fr^2}} }[/math] (14)

2) Froude number

[math]\displaystyle{ Fr = {\frac{q_{w}}{g^ \left ({\frac{1}{2}}\right ) H^ \left ( {\frac{3}{2}}\right )}} }[/math] (15)

3) Friction slope

[math]\displaystyle{ S_{f} = C_{f} {\frac{U^2}{g H}} = {\frac{\tau_{b}}{\rho g H}} = \phi_{s}^ \left ({\frac{-4}{3}}\right ) S_{nom} }[/math] (16)

4) boundary shear stress in a sand-bed river

[math]\displaystyle{ \tau_{b} = \tau_{bs} + \tau_{bf} = \rho \left ( C_{fs} + C_{ff} \right ) U^2 }[/math] (17)

5) boundary depth in a sand-bed river

[math]\displaystyle{ H = H_{s} + H_{f} }[/math] (18)

6) friction coefficient due to skin friction

[math]\displaystyle{ C_{fs}^ \left ({\frac{-1}{2}}\right ) = {\frac{q_{w}}{H \sqrt{g H_{s} S_{f}}}} = 8.32 \left ({\frac{H_{s}}{3D_{s90}}}\right )^ \left ({\frac{1}{6}}\right ) }[/math] (19)

7) Shields number due to form drag

[math]\displaystyle{ \tau_{s}^* = {\frac{H_{s} S_{f}}{R D_{50}}} = \left\{\begin{matrix} 0.05 + 0.7 \left (\tau^* Fr^ \left (0.7\right ) \right )^ \left (0.8\right ) & \tau^* \gt = \tau_{min}^* \\ \tau^* & \tau^* \lt \tau_{min}^*\end{matrix}\right. }[/math] (20)

8) Shields number

[math]\displaystyle{ \tau^* = {\frac{H S_{f}}{R D_{s50}}} }[/math] (21)
  • Bed shear stress due to skin friction to total bed shear stress
[math]\displaystyle{ \phi = \left\{\begin{matrix} {\frac{0.05 + 0.7 \left ( \tau^* Fr ^ \left (0.7\right ) \right ) ^ \left (0.8\right )}{\tau^*}} & \tau^* \gt =\tau_{min}^* \\ 1 & \tau^* \lt \tau_{min}^* \end{matrix}\right. }[/math] (22)
  • Minimum Shields number
[math]\displaystyle{ \tau_{min}^* = 0.05 + 0.7 \left ( \tau_{min}^* Fr^ \left (0.7\right ) \right ) ^ \left (0.8\right ) }[/math] (23)
  • Calculation of Hs and Sf from known depth H
[math]\displaystyle{ F \left (\phi_{s} \right ) = \left\{\begin{matrix} \phi_{s} - [{\frac{\phi_{s}^ \left ({\frac{-1}{3}}\right ) \tau_{nom}^* - 0.05}{0.7 \left ( \tau_{nom}^* \right ) ^ \left ({\frac{4}{5}}\right ) Fr^ \left ({\frac{14}{25}}\right )}}]^ \left ({\frac{-15}{16}}\right ) & \phi_{s} \lt = \left (\tau_{nom}^* / \tau_{min}^* \right )^ \left ({\frac{3}{4}}\right ) \\ \tau_{s} - 1 & \tau_{s} \gt \left ( \tau_{nom}^* / \tau_{min}^* \right) ^ \left ({\frac{3}{4}}\right )\end{matrix}\right. = 0 }[/math] (24)
  • Calculation of the normal flow condition prevailing in the absence of the dredge slot
[math]\displaystyle{ S_{f} = S }[/math] (25)
[math]\displaystyle{ F_{N} \left (H\right ) = \left\{\begin{matrix} H \phi_{s} \left (H\right ) - {\frac{R D_{50}}{S}}[0.05 + 0.7 \left ({\frac{H S}{R D_{s50}}}\right )^ \left ({\frac{4}{5}}\right )\left ({\frac{q_{w}}{\sqrt{g}H^ \left ({\frac{3}{2}}\right )}}\right )^ \left ({\frac{14}{25}}\right )] & H \gt = {\frac{R D_{50} \tau_{min}^*}{S}} \\ H \phi_{s} \left (H\right ) - H & H \lt {\frac{R D_{50} \tau_{min}^*}{S}} \end{matrix}\right. = 0 }[/math] (26)

Notes

The program generates a plot of bed and water surface elevations η and ξ versus streamwise distance, as well as a plot of depth H and depth due to skin friction Hs versus streamwise distance.

In the calculation of φs, a Newton-Raphson iterative scheme solution is implemented. The solution is initiated with some guess φs,1. The calculation is continued until the relative error is under some acceptable limit. There always seems to be a first guess of φs for which the Newton-Raphson scheme converges. When τnom * is only slightly greater than τmin * (in which case φs is only slightly less than 1), however, the right initial guess is sometimes hard to find. For example, the scheme may bounce back and forth between two values of φs without converging, or may yield at some point a negative value of φs. The following technique was adopted to overcome these difficulties:

a) The initial guess for φs is set equal to 0.9.

b) Whenever the iterative scheme yields a negative value of φs, φs is reset to 1.02 and the iterative calculation recommenced.

c) Whenever the calculation does not converge, it is assumed that φs is so close to 1 that it can be set equal to 1.

  • Note on input parameters:

If the minimum shear stress due to skin friction τs,min, calculation bombs at any point the program will end.

If the height due to skin friction Hs, calculation bombs, the program will assign the last value in the calculations to Hs.

If the Hnorm calculation bombs, the value for Hnorm is not outputted, but this does not affect the other values that are calculated.

This program requires a given downstream water water elevation, ξd, such that Frd < 1, because the flow is assumed subcritical, and the program will alert the user and quit if the condition is not met.

Downstream bed elevation is set equal to 0, so that at normal conditions the downstream water surface elevation ξd = Hn. The user may then specify a value of ξd that differs from Hn (as long as the corresponding downstream Froude number is less than unity), and compute the resulting backwater curve.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Ashida, K. and M. Michiue, 1972, Study on hydraulic resistance and bedload transport rate in alluvial streams, Transactions, Japan Society of Civil Engineering, 206: 59-69 (in Japanese).
  • Wright, S. and G. Parker, 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering, 130(8), 796-805.

Links