Model help:AgDegBW: Difference between revisions

From CSDMS
(Created page with "<!-- How to create a new "Model help" page: 1) Log in to the wiki 2) Create a new page for each model, by using the following URL: * http://csdms.colorado.edu/wiki/Model help:...")
 
m (Text replacement - "http://csdms.colorado.edu/wiki/" to "https://csdms.colorado.edu/wiki/")
 
(15 intermediate revisions by 2 users not shown)
Line 3: Line 3:
1) Log in to the wiki
1) Log in to the wiki
2) Create a new page for each model, by using the following URL:
2) Create a new page for each model, by using the following URL:
   * http://csdms.colorado.edu/wiki/Model help:<modelname>
   * https://csdms.colorado.edu/wiki/Model help:<modelname>
   * Replace <modelname> with the name of a model
   * Replace <modelname> with the name of a model
3) Than follow the link "edit this page"
3) Than follow the link "edit this page"
Line 17: Line 17:


==Model introduction==
==Model introduction==
The model computes variation in river bed level η(x, t), where x denotes a streamwise coordinate and t denotes time, in a river with constant width B.  The bed sediment is characterized in terms of a single grain size D and submerged specific gravity R.  The reach under consideration has length L.  Water surface elevation at the downstream end is prescribed.  The model is based on a calculation of total bed material load.  The model is 1D, assumes a rectangular channel and neglects wall or bank effects.
The model calculates a) an ambient mobile-bed equilibrium, and b)the response of a river reach to either 1) changed sediment input rate at the upstream end of the reach starting from t = 0 or 2) changed downstream water surface elevation at the downstream end of the reach starting from t = 0, where t is the temporal coordinate.  The code is very similar to AgDegNorm.  The main difference between the two codes is in the procedure to compute the water depth.  In AgDegNorm the flow is assumed normal (i.e. steady and uniform), while in AgDegBW the flow is assumed steady and it is computed solving the backwater equation. The case of Froude-subcritical flow, for which Fr < 1, is considered herein. This implies that integration of the backwater equation must proceed upstream from x = L, with x streamwise coordinate and L length of the modeled reach.  Both a Chezy and a Manning-Striclker formulation can be used to compute the flow.
 
By modifying the upstream sediment feed rate G<sub>tf</sub> and/or the downstream water surface elevation ξ<sub>d</sub>, the river can be forced to aggrade or degrade to a new equilibrium.  The program computes this evolution.
 


<div id=CMT_MODEL_PARAMETERS>
<div id=CMT_MODEL_PARAMETERS>
==Model parameters==
==Model parameters==
= First tab header =
= Input Files and Directories =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|Input directory
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|path to input files
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"|
|-
|Site prefix
|Site prefix for Input/Output files
|
|-
|Case prefix
|Case prefix for Input/Output files
|
|-
|}
|}


= Second tab header =
= Run Parameters =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|Flood discharge
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"| m<sup>3</sup> / s
|-
|Intermittency
|
| -
|-
|Channel Width
|
| m
|-
|Grain size
|
| mm
|-
|Bed Porosity
|
| -
|-
|Roughness height
|
| mm
|-
|Ambient Bed Slope
|
|
|-
|Imposed Annual Sediment Transfer Rate from Upstream
|
| tons / annum
|-
|Imposed water surface elevation
|
| m
|-
|Intervals
|
|
|-
|Length of reach
|
| m
|-
|Number of Time Steps per Printout
|
|
|-
|Number of printout
|
|
|-
|Upwinding coefficient (1 = full upwind, 0.5 = central difference)
|
|
|-
|Coefficient in Manning-Strickler Resistance Relation
|
|
|-
|Coefficient in Sediment Transport Relation
|
|
|-
|Exponent in Sediment Transport Relation
|
|
|-
|Critical Shield stress
|
|
|-
|Fraction of bed shear stress that is skin friction
|
|
|-
|Submerged specific gravity of sediment
|
|
|-
|Time step
|
| year
|-
|}
|}


= Etc. tab header =
= About =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
!Parameter!!Description!!Unit
|-valign="top"
|width="20%"|Model name
|width="60%"|name of the model
|width="20%"| -
|-
|Author name
|name of the model author
| -
|-
|}
<headertabs/>
<headertabs/>
</div>


==Uses ports==
==Uses ports==
Line 58: Line 157:
The backwater equation
The backwater equation
::::{|
::::{|
|width=500px|<math>{/frac{dH}{dx}} = {/frac{S - S_{f}}{1 - F_{r} ^2}} </math>
|width=500px|<math>{\frac{dH}{dx}} = {\frac{S - S_{f}}{1 - F_{r} ^2}} </math>
|width=50px align="right"|(1)
|width=50px align="right"|(1)
|}
|}
* Friction slope
::::{|
::::{|
|width=500px|<math>S_{f} = C_{f} F_{r} ^2 </math>
|width=500px|<math>S_{f} = C_{f} F_{r} ^2 </math>
|width=50px align="right"|(2)
|width=50px align="right"|(2)
|}
|}
* Froude number
::::{|
::::{|
|width=500px|<math>F_{r} ^2 = {/frac{U^2}{g H}} = {/frac{q_{w} ^2}{g H^3}} </math>
|width=500px|<math>F_{r} ^2 = {\frac{U^2}{g H}} = {\frac{q_{w} ^2}{g H^3}} </math>
|width=50px align="right"|(3)
|width=50px align="right"|(3)
|}
|}
* Flow velocity
::::{|
::::{|
|width=500px|<math>U = {/frac{q_{w}}{H}} </math>
|width=500px|<math>U = {\frac{q_{w}}{H}} </math>
|width=50px align="right"|(4)
|width=50px align="right"|(4)
|}
|}
* Manninbg-Strickler resistance
* The bed friction coefficient ( assumed to obey a Manninbg-Strickler resistance )
::::{|
::::{|
|width=500px|<math>C_f ^ \left ( {/frac{-1}{2}} \right ) = C_{z} = /alpha_{r} \left ( {/frac{H}{k_{c}}} \right ) ^{/frac{1}{6}} </math>
|width=500px|<math>C_f ^ \left ( {\frac{-1}{2}} \right ) = C_{z} = \alpha_{r} \left ( {\frac{H}{k_{c}}} \right ) ^{\frac{1}{6}} </math>
|width=50px align="right"|(5)
|width=50px align="right"|(5)
|}
|}
* grain roughness (Used as roughness height when bedforms are absent)
::::{|
::::{|
|width=500px|<math>k_{s} = n_{k} D </math>
|width=500px|<math>k_{s} = n_{k} D </math>
|width=50px align="right"|(6)
|width=50px align="right"|(6)
|}
|}
* The relation between bed slope S and bed elevation η (Froude-subcritical flow (Fr < 1))
::::{|
::::{|
|width=500px|<math>S = -{/frac{/eta}{x}} </math>
|width=500px|<math>S = -{\frac{\partial \eta}{\partial x}} </math>
|width=50px align="right"|(7)
|width=50px align="right"|(7)
|}
|}
* Water surface elevation (Froude-subcritical flow (Fr < 1))
::::{|
::::{|
|width=500px|<math>/epsilon = /eta + H </math>
|width=500px|<math>\epsilon = \eta + H </math>
|width=50px align="right"|(8)
|width=50px align="right"|(8)
|}
|}
Line 95: Line 200:
|width=50px align="right"|(9)
|width=50px align="right"|(9)
|}
|}
* Bed shear stress
::::{|
::::{|
|width=500px|<math>\tau_{b} = \rho C_{f} U^2 </math>
|width=500px|<math>\tau_{b} = \rho C_{f} U^2 </math>
|width=50px align="right"|(10)
|width=50px align="right"|(10)
|}
|}
* Submerged specific gravity
::::{|
::::{|
|width=500px|<math>R = {\frac{\rho_{s}}{\rho}} - 1 </math>
|width=500px|<math>R = {\frac{\rho_{s}}{\rho}} - 1 </math>
|width=50px align="right"|(11)
|width=50px align="right"|(11)
|}
|}
* Computation of the sediment transport
* Computation of the sediment transport (Meyer-Peter and Muller equation )
equation of the type of Meyer-Peter and Muller
* τ<sup>*</sup> > τ<sub>c</sub> <sup>*</sup>
::::{|
::::{|
|width=500px|<math>q_{t} ^* = \alpha_{t} \left ( \phi_{s} \tau ^2 - \tau_{c} ^* \right ) ^ \left ( n_{t} \right ) </math>
|width=500px|<math>q_{t} ^* = \left\{\begin{matrix} \alpha_{t} \left ( \varphi_{s} \tau ^2 - \tau_{c} ^* \right ) ^ \left ( n_{t} \right ) & \tau^* > \tau_{c}^* \\ 0 & \tau^* <= \tau_{c}^* \end{matrix}\right. </math>
|width=50px align="right"|(12)
|width=50px align="right"|(12)
|}
|}
* τ<sup>*</sup> <= τ<sub>c</sub> <sup>*</sup>
* Einstein number
::::{|
::::{|
|width=500px|<math>q_{t} ^* = 0 </math>
|width=500px|<math>q_{t} ^* = {\frac {q_{t}}{\sqrt{R g D} D}}  </math>
|width=50px align="right"|(13)
|width=50px align="right"|(13)
|}
|}
* Cumulative time of the river has been in flood
::::{|
::::{|
|width=500px|<math>G_{t} = \rho_{s} q_{t} Bl_{f} t_{a} </math>
|width=500px|<math>t_{f} = I_{f} t </math>
|width=50px align="right"|(14)
|width=50px align="right"|(14)
|}
|}
* Equilibrium  (graded) states
* Annual sediment yield with a graded state at this slope
::::{|
::::{|
|width=500px|<math>q_{t} = {\frac{G_{tf}}{\rho_{s}Bl_{f} t_{a}}} </math>
|width=500px|<math>G_{t} = \rho_{s} q_{t} Bl_{f} t_{a} </math>
|width=50px align="right"|(15)
|width=50px align="right"|(15)
|}
* Volume sediment transport rate per unit width obtained at the graded state
::::{|
|width=500px|<math>q_{t} = {\frac{G_{tf}}{\rho_{s}B I_{f} t_{a}}} </math>
|width=50px align="right"|(16)
|}
|}
* Computation of bed variation
* Computation of bed variation
Exner equation
* Exner equation of sediment continuity (assume that q<sub>t</sub> is zero for most of the time)
::::{|
|width=500px|<math>\left ( 1 - \lambda_{p} \right ) {\frac{\partial\eta}{\partial t}} = - {\frac{\partial q_{t}}{\partial x}} </math>
|width=50px align="right"|(17)
|}
* Exner equation of sediment continuity (average over many floods)
::::{|
|width=500px|<math> \left ( 1 - \lambda_{p} \right ) {\frac{\partial \eta}{\partial t}}= - {\frac{\partial I_{f} q_{t}}{\partial x}} </math>
|width=50px align="right"|(18)
|}
* Numerical scheme
* Initial bed elevation
::::{|
|width=500px|<math>\eta_{i}=S \left ( L - x_{i} \right )</math>
|width=50px align=right|(19)
|}
* Computation of the depth of upstream node
::::{|
|width=500px|<math>{\frac{H_{i+1} - H_{i}}{\Delta x}} = F_{back} \left ( H \right ) = {\frac{{\frac{\eta _{i+1} - \eta _{i}}{\Delta x} - {\frac{1}{\alpha _{r} ^2}}\left ({\frac{H}{k_{c}}}\right )^\left ({\frac{-1}{3}} \right ){\frac{q_{w}^2}{g H^3}}}}{\frac{q_{w}^2}{g H^3}}} </math>
|width=50px align=right|(20)
|}
* Boundary condition of depth
::::{|
::::{|
|width=500px|<math>\left ( 1 - \lambda_{p} \right ) {\frac{\eta}{t}} = - {\frac{q_{t}}{x}} </math>
|width=500px|<math> H_{M + 1} = \xi _{d} - \eta _{M+1} </math>
|width=50px align="right"|(16)
|width=50px align=right|(21)
|}
* A predictor-corrector scheme used to solve for H
::::{|
|width=500px|<math> H_{pred}=H_{i+1} - F_{back}\left (H_{i+1}\right ) \Delta x </math>
|width=50px align=right|(22)
|}
::::{|
|width=500px|<math> H_{i} = H_{i+1} - {\frac{1}{2}}[F_{back} \left ( H_{pred} \right )+ F_{back} \left (H_{i+1} \right )] \Delta x </math>
|width=50px align=right|(23)
|}
|}
* Spatial derivative of the total bed material load per unit width
::::{|
::::{|
|width=500px|<math> \left ( 1 - \lambda_{p} \right ) {\frac{\eta}{t}}= - {\frac{l_{f} q_{t}}{x}} </math>
|width=500px|<math>\frac{\Delta q_{t,i}}{\Delta X}=\left\{\begin{matrix} a_{u}\frac{q_{t,i}-q_{t,i-1}}{\Delta X}+\left ( 1-a_{u} \right )\frac{q_{t,i+1}-q_{t,i}}{\Delta X} & i=1...M \\ {\frac{q_{t,i} - q_{t,i-1}}{\Delta x}} & i=M + 1 \end{matrix}\right.</math>
|width=50px align="right"|(17)
|width=50px align=right|(24)
|}
|}


Line 139: Line 283:
{| {{Prettytable}} class="wikitable sortable"
{| {{Prettytable}} class="wikitable sortable"
!Symbol!!Description!!Unit
!Symbol!!Description!!Unit
|-
| Q
| flood discharge
| L <sup>3</sup> / T
|-
|-
| x
| x
| streamwise coordinate
| streamwise coordinate
| -
| L
|-
| η
| river bed level
| -
|-
|-
| t
| t
| time
| time step
| s
| T
|-
|-
| B
| B
| river width
| river width
| m
| L
|-
|-
| D
| D
| single grain size
| grain size of the bed sediment
| mm
| L
|-
|-
| R
| λ<sub>p</sub>
| submerged specific gravity
| bed porosity
| -
| -
|-
|-
| ξ<sub>d</sub>
| ξ<sub>d</sub>
| downstream water surface elevation
| downstream water surface elevation
| m
| L
|-
|-
| q<sub>w</sub>
| q<sub>w</sub>
| water discharge per unit width
| water discharge per unit width
| m<sup>2</sup> / s
| L<sup>2</sup> / T
|-
|-
| H
| k<sub>c</sub>
| depth
| composite roughness height
| m
| L
|-
| G
| imposed annual sediment transfer rate from upstream
| M / T
|-
| G<sub>tf</sub>
| upstream sediment feed rate
| -
|-
| L
| length of reach under consideration
| L
|-
| i
| number of time steps per printout
| -
|-
| p
| number of printouts desired
| -
|-
|-
| k<sub>c</sub>
| M
| the composite roughness height
| number of spatial intervals
| m
| -
|-
|-
| S
| R
| bed slope
| submerged specific gravity of sediment
| -
| -
|-
|-
| S_{f}
| S<sub>f</sub>
| friction slope
| friction slope
| -
| -
Line 194: Line 358:
| U
| U
| flow velocity
| flow velocity
| m / s
| L / T
|-
|-
| C<sub>f</sub>
| C<sub>f</sub>
Line 202: Line 366:
| g
| g
| acceleration of gravity
| acceleration of gravity
| m/ s^2
| L / T<sup>2</sup>
|-
|-  
| α<sub>r</sub>
| α<sub>r</sub>
| dimensionless coefficient between 8 and 9
| coefficient in Manning-Stricker, dimensionless coefficient between 8 and 9
| -
| -
|-
|-
| k<sub>c</sub>
| absent roughness height
| m
|- 
| k<sub>s</sub>
| k<sub>s</sub>
| grain roughness
| grain roughness
| -
| L
|-
|-
| n<sub>k</sub>
| n<sub>k</sub>
| dimensionless coefficient typically between 2 and 5
| dimensionless coefficient typically between 2 and 5
| -
| -
|-   
|-   
| τ<sub>*</sub>
| τ<sup>*</sup>
| Shield number
| Shield number
| -
| -
|-
| τ<sub>b</sub>
| bed shear stress
| kg / (s^2 m)
|-
|-
| ρ
| ρ
| fluid density
| fluid density
| kg / m<sup>3</sup>
| M / L<sup>3</sup>
|-
|-
| ρ<sub>s</sub>
| ρ<sub>s</sub>
| sediment density
| sediment density
| kg / m<sup>3</sup>
| M / L<sup>3</sup>
|-
|-
| τ<sub>c</sub>
| τ<sub>c</sub>
Line 240: Line 396:
| -
| -
|-
|-
| ϕ<sub>s</sub>
| ψ<sub>s</sub>
| the fraction of bed shear stress
| the fraction of bed shear stress
| -
| -
|-
|-
| q<sub>t</sub> ^*
| q<sub>t</sub> <sup>*</sup>
| Einstein number
| Einstein number
| -
| -
Line 250: Line 406:
| q<sub>t</sub>
| q<sub>t</sub>
| volume sediment transport rate per unit width
| volume sediment transport rate per unit width
| -
| L<sup>2</sup> / T
|-
|-
| l<sub>f</sub>
| I<sub>f</sub>
| intermittency
| flood intermittency
| -
| -
|-
|-
| t<sub>f</sub>
| t<sub>f</sub>
| cumulative time the river has been in flood
| cumulative time the river has been in flood
| s
| T
|-
|-
| G<sub>t</sub>
| G<sub>t</sub>
| the annual sediment yield
| the annual sediment yield
| tone/yr
| M / T
|-
|-
| t<sub>a</sub>
| t<sub>a</sub>
Line 268: Line 424:
| -
| -
|-
|-
| λ<sub>p</sub>
| Q<sub>f</sub>
| the porosity of the bed deposit
| sediment transport rate during flood discharge
| L<sup>2</sup> / T
|-
| α<sub>t</sub>
| dimensionless coefficient in the sediment transport equation, equals to 8
| -
|-
| n<sub>t</sub>
| exponent in sediment transport relation, equals to 1.5
| -
|-
| τ<sub>c</sub> <sup>*</sup>
| reference Shields number in sediment transport relation, equals to 0.047
|-
| C<sub>f</sub>
| bed friction coefficient, equals to τ<sub>b</sub> / (ρ U<sup>2</sup> )
| -
|-
| C<sub>Z</sub>
| dimensionless Chezy resistance coefficient.
|-
| S<sub>l</sub>
| initial bed slope of the river
| -
|-
| η<sub>i</sub>
| initial bed elevation
| L
|-
| τ
| shear stress on bed surface
| -
|-
| q<sub>b</sub>
| bed material load
| M / L
|-
| Δx
| spatial step length, equals to L / M
| L
|-
| Q<sub>w</sub>
| flood discharge
| L<sup>3</sup> / T
|-
| Δt
| time step
| T
|-
| Ntoprint
| number of time steps to printout
| -
|-
| Nprint
| number of printouts
| -
|-
| a<sub>U</sub>
| upwinding coefficient (1=full upwind, 0.5=central difference)
| -
|-
| α<sub>s</sub>
| coefficient in sediment transport relation
| -
|-
| n<sub>k</sub>
| parameter such that k<sub>s</sub> = n<sub>k</sub> D<sub>s90</sub>
| -
|-
|}
 
'''Output'''
{| {{Prettytable}} class="wikitable sortable"
!Symbol!!Description!!Unit
|-
| η
| bed surface elevatioon
| T
|-
| H
| water depth
| T
|-
| ξ
| water surface elevation
| T
|-
| τ<sub>b</sub>
| bed shear stress
| M / (T<sup>2</sup> L)
|-
| S
| bed slope
| -
| -
|-
|-
| Q<sub>f</sub>
| q<sub>t</sub>
| sediment transport rate during flood discharge
| total bed material load
| L<sup>2</sup> / T
|-
|-
|}
|}
Line 280: Line 529:
</div>
</div>
==Notes==
==Notes==
Actual rivers tend to be morphologically active only during floods.  That is, most of the time they are not doing much to modify their morphology.  The simplest way to take this into account is to assume an intermittency If such that the river is in flood a fraction I of the time, during which Q = Qf and qt is the sediment transport rate at this discharge (Paola et al., 1992).  For the other (1 – If) fraction of time the river is assumed not to be moving sediment.
The model computes variation in river bed level η(x, t), where x denotes a streamwise coordinate and t denotes time, in a river with constant width B.  The bed sediment is characterized in terms of a single grain size D and submerged specific gravity R.  The reach under consideration has length L.  Water surface elevation at the downstream end is prescribed.  The model is based on a calculation of total bed material load.  The model is 1D, assumes a rectangular channel and neglects wall or bank effects.
 
By modifying the upstream sediment feed rate G<sub>tf</sub> and/or the downstream water surface elevation ξ<sub>d</sub>, the river can be forced to aggrade or degrade to a new equilibrium.  The program computes this evolution.
 
Actual rivers tend to be morphologically active only during floods.  That is, most of the time they are not doing much to modify their morphology.  The simplest way to take this into account is to assume an intermittency I<sub>f</sub> such that the river is in flood a fraction I of the time, during which Q = Q<sub>f</sub> and q<sub>t</sub> is the sediment transport rate at this discharge (Paola et al., 1992).  For the other (1 – I<sub>f</sub>) fraction of time the river is assumed not to be moving sediment.


Output is controlled by the parameters Ntoprint and Nprint.  The code will implement Ntoprint time steps.  In addition to output pertaining to the initial state, the code implements Nprint outputs, to that the total number of time steps executed is equal to Nprint x Ntoprint.
Output is controlled by the parameters Ntoprint and Nprint.  The code will implement Ntoprint time steps.  In addition to output pertaining to the initial state, the code implements Nprint outputs, to that the total number of time steps executed is equal to Nprint x Ntoprint.


* Note on model running
The downstream water surface elevation must exceed the H<sub>c</sub>, critical depth, which is equal to (Q<sub>w</sub> <sup>2</sup>/(B<sub>c</sub> <sup>2</sup>g))<sup>1/3</sup>, otherwise the user is alerted, and the program exits.
The water depth is calculated using a Chézy formulation, and the Manning-Strickler formulation is implemented, when only the roughness height, k<sub>c</sub>, and the coefficient α<sub>r</sub> are given in input file. When all the three parameters are present, the program will ask the user which formulation they would like to use.


==Examples==
==Examples==
Line 289: Line 546:


<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
* <span class="remove_this_tag">Upload file: http://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Upload file: https://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>


Line 304: Line 561:


==Links==
==Links==
* [[http://csdms.colorado.edu/wiki/Model:AgDegBW Model:AgDegBW]]
* [[Model:AgDegBW]]


[[Category:Utility components]]
[[Category:Utility components]]

Latest revision as of 17:18, 19 February 2018

The CSDMS Help System

AgDegBW

It is the Calculator for aggradation and degradation of a river reach using a backwater formulation. This program computes 1D bed variation in rivers due to differential sediment transport. The sediment is assumed to be uniform with size D. All sediment transport is assumed to occur in a specified fraction of time during which the river is in flood, specified by an intermittency. A Manning-Strickler relation is used for bed resistance. A generic Meyer-Peter Muller relation is used for sediment transport. The flow is computed using a backwater formulation for gradually varied flow.

Model introduction

The model calculates a) an ambient mobile-bed equilibrium, and b)the response of a river reach to either 1) changed sediment input rate at the upstream end of the reach starting from t = 0 or 2) changed downstream water surface elevation at the downstream end of the reach starting from t = 0, where t is the temporal coordinate. The code is very similar to AgDegNorm. The main difference between the two codes is in the procedure to compute the water depth. In AgDegNorm the flow is assumed normal (i.e. steady and uniform), while in AgDegBW the flow is assumed steady and it is computed solving the backwater equation. The case of Froude-subcritical flow, for which Fr < 1, is considered herein. This implies that integration of the backwater equation must proceed upstream from x = L, with x streamwise coordinate and L length of the modeled reach. Both a Chezy and a Manning-Striclker formulation can be used to compute the flow.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
Flood discharge m3 / s
Intermittency -
Channel Width m
Grain size mm
Bed Porosity -
Roughness height mm
Ambient Bed Slope
Imposed Annual Sediment Transfer Rate from Upstream tons / annum
Imposed water surface elevation m
Intervals
Length of reach m
Number of Time Steps per Printout
Number of printout
Upwinding coefficient (1 = full upwind, 0.5 = central difference)
Coefficient in Manning-Strickler Resistance Relation
Coefficient in Sediment Transport Relation
Exponent in Sediment Transport Relation
Critical Shield stress
Fraction of bed shear stress that is skin friction
Submerged specific gravity of sediment
Time step year
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Computation of the flow

The backwater equation

[math]\displaystyle{ {\frac{dH}{dx}} = {\frac{S - S_{f}}{1 - F_{r} ^2}} }[/math] (1)
  • Friction slope
[math]\displaystyle{ S_{f} = C_{f} F_{r} ^2 }[/math] (2)
  • Froude number
[math]\displaystyle{ F_{r} ^2 = {\frac{U^2}{g H}} = {\frac{q_{w} ^2}{g H^3}} }[/math] (3)
  • Flow velocity
[math]\displaystyle{ U = {\frac{q_{w}}{H}} }[/math] (4)
  • The bed friction coefficient ( assumed to obey a Manninbg-Strickler resistance )
[math]\displaystyle{ C_f ^ \left ( {\frac{-1}{2}} \right ) = C_{z} = \alpha_{r} \left ( {\frac{H}{k_{c}}} \right ) ^{\frac{1}{6}} }[/math] (5)
  • grain roughness (Used as roughness height when bedforms are absent)
[math]\displaystyle{ k_{s} = n_{k} D }[/math] (6)
  • The relation between bed slope S and bed elevation η (Froude-subcritical flow (Fr < 1))
[math]\displaystyle{ S = -{\frac{\partial \eta}{\partial x}} }[/math] (7)
  • Water surface elevation (Froude-subcritical flow (Fr < 1))
[math]\displaystyle{ \epsilon = \eta + H }[/math] (8)
  • Shields number
[math]\displaystyle{ \tau^* = {\frac{\tau_{b}}{\rho R g D}} = {\frac{C_{f} U^2}{R g D}} = {\frac{C_{f} {\frac{q_{w} ^2}{H^2}}}{R g D}} }[/math] (9)
  • Bed shear stress
[math]\displaystyle{ \tau_{b} = \rho C_{f} U^2 }[/math] (10)
  • Submerged specific gravity
[math]\displaystyle{ R = {\frac{\rho_{s}}{\rho}} - 1 }[/math] (11)
  • Computation of the sediment transport (Meyer-Peter and Muller equation )
[math]\displaystyle{ q_{t} ^* = \left\{\begin{matrix} \alpha_{t} \left ( \varphi_{s} \tau ^2 - \tau_{c} ^* \right ) ^ \left ( n_{t} \right ) & \tau^* \gt \tau_{c}^* \\ 0 & \tau^* \lt = \tau_{c}^* \end{matrix}\right. }[/math] (12)
  • Einstein number
[math]\displaystyle{ q_{t} ^* = {\frac {q_{t}}{\sqrt{R g D} D}} }[/math] (13)
  • Cumulative time of the river has been in flood
[math]\displaystyle{ t_{f} = I_{f} t }[/math] (14)
  • Equilibrium (graded) states
  • Annual sediment yield with a graded state at this slope
[math]\displaystyle{ G_{t} = \rho_{s} q_{t} Bl_{f} t_{a} }[/math] (15)
  • Volume sediment transport rate per unit width obtained at the graded state
[math]\displaystyle{ q_{t} = {\frac{G_{tf}}{\rho_{s}B I_{f} t_{a}}} }[/math] (16)
  • Computation of bed variation
  • Exner equation of sediment continuity (assume that qt is zero for most of the time)
[math]\displaystyle{ \left ( 1 - \lambda_{p} \right ) {\frac{\partial\eta}{\partial t}} = - {\frac{\partial q_{t}}{\partial x}} }[/math] (17)
  • Exner equation of sediment continuity (average over many floods)
[math]\displaystyle{ \left ( 1 - \lambda_{p} \right ) {\frac{\partial \eta}{\partial t}}= - {\frac{\partial I_{f} q_{t}}{\partial x}} }[/math] (18)
  • Numerical scheme
  • Initial bed elevation
[math]\displaystyle{ \eta_{i}=S \left ( L - x_{i} \right ) }[/math] (19)
  • Computation of the depth of upstream node
[math]\displaystyle{ {\frac{H_{i+1} - H_{i}}{\Delta x}} = F_{back} \left ( H \right ) = {\frac{{\frac{\eta _{i+1} - \eta _{i}}{\Delta x} - {\frac{1}{\alpha _{r} ^2}}\left ({\frac{H}{k_{c}}}\right )^\left ({\frac{-1}{3}} \right ){\frac{q_{w}^2}{g H^3}}}}{\frac{q_{w}^2}{g H^3}}} }[/math] (20)
  • Boundary condition of depth
[math]\displaystyle{ H_{M + 1} = \xi _{d} - \eta _{M+1} }[/math] (21)
  • A predictor-corrector scheme used to solve for H
[math]\displaystyle{ H_{pred}=H_{i+1} - F_{back}\left (H_{i+1}\right ) \Delta x }[/math] (22)
[math]\displaystyle{ H_{i} = H_{i+1} - {\frac{1}{2}}[F_{back} \left ( H_{pred} \right )+ F_{back} \left (H_{i+1} \right )] \Delta x }[/math] (23)
  • Spatial derivative of the total bed material load per unit width
[math]\displaystyle{ \frac{\Delta q_{t,i}}{\Delta X}=\left\{\begin{matrix} a_{u}\frac{q_{t,i}-q_{t,i-1}}{\Delta X}+\left ( 1-a_{u} \right )\frac{q_{t,i+1}-q_{t,i}}{\Delta X} & i=1...M \\ {\frac{q_{t,i} - q_{t,i-1}}{\Delta x}} & i=M + 1 \end{matrix}\right. }[/math] (24)

Notes

The model computes variation in river bed level η(x, t), where x denotes a streamwise coordinate and t denotes time, in a river with constant width B. The bed sediment is characterized in terms of a single grain size D and submerged specific gravity R. The reach under consideration has length L. Water surface elevation at the downstream end is prescribed. The model is based on a calculation of total bed material load. The model is 1D, assumes a rectangular channel and neglects wall or bank effects.

By modifying the upstream sediment feed rate Gtf and/or the downstream water surface elevation ξd, the river can be forced to aggrade or degrade to a new equilibrium. The program computes this evolution.

Actual rivers tend to be morphologically active only during floods. That is, most of the time they are not doing much to modify their morphology. The simplest way to take this into account is to assume an intermittency If such that the river is in flood a fraction I of the time, during which Q = Qf and qt is the sediment transport rate at this discharge (Paola et al., 1992). For the other (1 – If) fraction of time the river is assumed not to be moving sediment.

Output is controlled by the parameters Ntoprint and Nprint. The code will implement Ntoprint time steps. In addition to output pertaining to the initial state, the code implements Nprint outputs, to that the total number of time steps executed is equal to Nprint x Ntoprint.

  • Note on model running

The downstream water surface elevation must exceed the Hc, critical depth, which is equal to (Qw 2/(Bc 2g))1/3, otherwise the user is alerted, and the program exits.

The water depth is calculated using a Chézy formulation, and the Manning-Strickler formulation is implemented, when only the roughness height, kc, and the coefficient αr are given in input file. When all the three parameters are present, the program will ask the user which formulation they would like to use.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Paola, C., Heller, P. L. & Angevine, C. L. 1992 The large-scale dynamics of grain-size variation in alluvial basins. I: Theory. Basin Research, 4, 73-90.
  • Meyer-Peter, E., and Müller, R. 1948 Formulas for bed-load transport. Proceedings, 2nd Congress International Association for Hydraulic Research, Rotterdam, the Netherlands, 39-64.


Links