Model help:Acronym1R: Difference between revisions

From CSDMS
No edit summary
m (Text replacement - "http://csdms.colorado.edu/wiki/" to "https://csdms.colorado.edu/wiki/")
 
(6 intermediate revisions by 2 users not shown)
Line 3: Line 3:
1) Log in to the wiki
1) Log in to the wiki
2) Create a new page for each model, by using the following URL:
2) Create a new page for each model, by using the following URL:
   * http://csdms.colorado.edu/wiki/Model help:<modelname>
   * https://csdms.colorado.edu/wiki/Model help:<modelname>
   * Replace <modelname> with the name of a model
   * Replace <modelname> with the name of a model
3) Than follow the link "edit this page"
3) Than follow the link "edit this page"
Line 14: Line 14:
__NOTOC__
__NOTOC__
==<big><big>{{PAGENAME}}</big></big>==
==<big><big>{{PAGENAME}}</big></big>==
"Acronym1_R” combines Acronym1 scheme with a Manning-Strickler relation for flow resistance. It first computes a value of u<sub>∗</sub> from specified values of the water discharge Q<sub>w</sub>, the channel width B and the bed slope H.  It then implements the same code as “Acronym1”. 
"Acronym1_R” combines Acronym1 scheme with a Manning-Strickler relation for flow resistance.  


==Model introduction==
==Model introduction==
This program works the same way as Acronym1, except that it calculates the flow velocity with the user inputted parameters, and it outputs the water depth, H, and shear velocity, u*, in addition to what Acronym1 outputs.
Acronym1_R is used for computing the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed) (D<sub>b,i</sub>, F<sub>f,i</sub>), i = 1..N+1, a specific gravity of the sediment (here equal to R + 1), a water discharge Q, a channel width B and a streamwise bed slope S.


<div id=CMT_MODEL_PARAMETERS>
<div id=CMT_MODEL_PARAMETERS>
Line 114: Line 114:
|width=50px align="right"|(5)
|width=50px align="right"|(5)
|}
|}
* The geometric standard deviations
* Geometric standard deviations of the surface material
::::{|
::::{|
|width=500px|<math>\sigma_{sg}= 2 ^\sigma </math>
|width=500px|<math>\sigma_{sg}= 2 ^\sigma </math>
|width=50px align="right"|(6)
|width=50px align="right"|(6)
|}
|}
* the arithmetic standard deviations
* Arithmetic standard deviations of the surface material
::::{|
::::{|
|width=500px|<math>\sigma ^2= \sum\limits_{i=1}^N \left (\Psi_{i} - \bar\Psi \right )^2 F_{i}  </math>
|width=500px|<math>\sigma ^2= \sum\limits_{i=1}^N \left (\Psi_{i} - \bar\Psi \right )^2 F_{i}  </math>
|width=50px align="right"|(7)
|width=50px align="right"|(7)
|}
|}
* The transport relation
* Bedload transport relation
::::{|
::::{|
|width=530px|<math>W_{i}^*= {\frac{Rgq_{bi}}{F_{i}u_{*} ^3}}= 0.00218 G \left (\Phi \right )  </math>
|width=530px|<math>W_{i}^*= {\frac{Rgq_{bi}}{F_{i}u_{*} ^3}}= 0.00218 G \left (\Phi \right )  </math>
Line 141: Line 141:
|width=50p=x align="right"|(11)
|width=50p=x align="right"|(11)
|}
|}
* φ> 1.59
* Φ> 1.59
::::{|
::::{|
|width=530px|<math> G \left ( \Phi \right )= 5474 \left ( 1 - {\frac{0.853}{\Phi}} \right ) ^ \left (4.5 \right )  </math>
|width=530px|<math> G \left ( \Phi \right )= 5474 \left ( 1 - {\frac{0.853}{\Phi}} \right ) ^ \left (4.5 \right )  </math>
|width=50p=x align="right"|(12)
|width=50p=x align="right"|(12)
|}
|}
* 1<=φ<=1.59
* 1<=Φ<=1.59
::::{|
::::{|
|width=530px|<math> G\left (\Phi \right )= exp[ 14.2\left ( \Phi - 1\right ) - 9.28 \left ( \Phi - 1 \right )^2  ]  </math>
|width=530px|<math> G\left (\Phi \right )= exp[ 14.2\left ( \Phi - 1\right ) - 9.28 \left ( \Phi - 1 \right )^2  ]  </math>
|width=50p=x align="right"|(13)
|width=50p=x align="right"|(13)
|}
|}
* φ< 1
* Φ< 1
::::{|
::::{|
|width=530px|<math> G\left (\Phi \right )= \Phi ^\left (14.2 \right )  </math>
|width=530px|<math> G\left (\Phi \right )= \Phi ^\left (14.2 \right )  </math>
Line 201: Line 201:
|width=50p=x align="right"|(24)
|width=50p=x align="right"|(24)
|}
|}
* Roughness height of the channel (including bed and vertical sidewalls)
::::{|
::::{|
|width=530px|<math>\tau_{b} B = \rho u_{*} ^2 B = \rho g S \left ( H B - H ^2 \right ) </math>
|width=530px|<math> k_{s} = n_{k} D_{s90}  </math>
|width=50p=x align="right"|(25)
|width=50p=x align="right"|(25)
|}
|}
::::{|
::::{|
|width=530px|<math>{\frac{U}{u_{*}}} = \alpha _{r} \left ( {\frac{H}{k_{s}}} \right )^ {\frac{1}{6}} </math>
|width=530px|<math>\tau_{b} B = \rho u_{*} ^2 B = \rho g S \left ( H B - H ^2 \right ) </math>
|width=50p=x align="right"|(26)
|width=50p=x align="right"|(26)
|}
|}
::::{|
::::{|
|width=530px|<math>U = {\frac{Q}{BH}} </math>
|width=530px|<math>{\frac{U}{u_{*}}} = \alpha _{r} \left ( {\frac{H}{k_{s}}} \right )^ {\frac{1}{6}} </math>
|width=50p=x align="right"|(27)
|width=50p=x align="right"|(27)
|}
|}
::::{|
::::{|
|width=530px|<math>H = \left ({\frac{k_{s} ^ {\frac{1}{3}} Q ^2}{\alpha_{r} ^2 g B^2 S}} \right )^ {\frac{3}{10}} c_{1} </math>
|width=530px|<math>U = {\frac{Q}{BH}} </math>
|width=50p=x align="right"|(28)
|width=50p=x align="right"|(28)
|}
|}
::::{|
::::{|
|width=530px|<math>c_{1}= \left ( 1 - {\frac{H}{B}} \right ) ^ \left ({\frac{-3}{10}}\right ) </math>
|width=530px|<math>H = \left ({\frac{k_{s} ^ {\frac{1}{3}} Q ^2}{\alpha_{r} ^2 g B^2 S}} \right )^ {\frac{3}{10}} c_{1} </math>
|width=50p=x align="right"|(29)
|width=50p=x align="right"|(29)
|}
|}
::::{|
::::{|
|width=530px|<math>k_{s} = n_{k} D_{s90} </math>
|width=530px|<math>c_{1}= \left ( 1 - {\frac{H}{B}} \right ) ^ \left ({\frac{-3}{10}}\right ) </math>
|width=50p=x align="right"|(30)
|width=50p=x align="right"|(30)
|}
|}
Line 234: Line 235:
| D
| D
| grain size
| grain size
| mm
| L
|-
|-
| D<sub>i</sub>
| D<sub>i</sub>
| characteristic grain size for the ith grain size range (i=1...N)
| characteristic grain size for the ith grain size range (i=1...N)
| mm
| L
|-
|-
| F<sub>i</sub>
| F<sub>i</sub>
| fraction in surface layer for the ith grain size range(for i =1~N)
| fraction in surface layer for the ith grain size range(for i =1...N)
| -
| -
|-
|-
Line 249: Line 250:
|-
|-
| ψ
| ψ
| grain sizes on the base-2 logarithmic ψscale
| grain sizes on the base-2 logarithmic ψ scale
|  
|  
|-
| D<sub>sg</sub>
| geometric mean size of the surface material
| mm
|-
| σ<sub>sg</sub>
| geometric standard deviations of the surface materials
| -
|-
| σ
| arithmetic standard deviations of the surface materials
| -
|-
|-
| ρ
| ρ
| density of water
| density of water
| kg/m<sup>3</sup>
| M / L<sup>3</sup>
|-
|-
| ρ<sub>s</sub>
| ρ<sub>s</sub>
| density of sediment
| density of sediment
| kg/m<sup>3</sup>
| M / L<sup>3</sup>
|-
|-
| R
| R
Line 278: Line 267:
| u
| u
| shear velocity of flow
| shear velocity of flow
| m / s
| L / T
|-
|-
| g
| g
| acceleration of gravity
| acceleration of gravity
| m / s<sup>2</sup>
| L / T<sup>2</sup>
|-
|-
| τ<sub>b</sub>
| τ<sub>b</sub>
| boundary shear stress on the bed
| boundary shear stress on the bed
| kg / (m s)
| M / (L T)
|-
|-
| u<sub>*</sub>
| u<sub>*</sub>
| shear velocity on the bed, equals to  
| shear velocity on the bed, equals to sqrt(τ<sub>b</sub> / ρ )
| m / s
| L / T
|-
| q<sub>bi</sub>
| volume gravel bedload transport per unit width of grains in the ith size range
| m <sup>2</sup>
|-
|-
| p<sub>i</sub>
| p<sub>i</sub>
| fraction of gravel bedload in the ith grain size range
| fraction of gravel bedload in the ith grain size range
| mm
| L
|-
|-
| D<sub>lg</sub>
| D<sub>lg</sub>
| geometric mean of the bedload
| geometric mean of the bedload
| mm
| L
|-
| σ<sub>lg</sub>
| geometric standard deviation of the bedload
| -
|- 
| D<sub>sx</sub>
| grain size in the surface material, such that x percentage of the material is finer
| mm
|-
| D<sub>lx</sub>
| grain size in the bedload material, such that x percentage of the material is finer
| - 
|-
|-
| ψ<sub>s</sub>
| ψ<sub>s</sub>
Line 323: Line 296:
| dimensionless bedload transport rate for ith grain size
| dimensionless bedload transport rate for ith grain size
| -
| -
|-
| q<sub>bi</sub>
| volume gravel bedload transport per unit width of grains in the ith size range
| L <sup>2</sup>
|-   
|-   
| ω
| ω
Line 328: Line 305:
|  
|  
|-
|-
| τ<sub>sg</sub> <sup>*</sup>
| Shields number based on surface geometric mean size
| -
|- 
| G(Φ)
| G(Φ)
| function in Parker (1990a, b) and Wilcock and Crowe (2003) bedload relation for gravel mixture; the function is different in each case
| function in Parker (1990a, b) and Wilcock and Crowe (2003) bedload relation for gravel mixture
|  
|  
|-
|-
Line 340: Line 313:
| -
| -
|-
|-
| Q
| Φ
| flow discharge
| parameter in Parker (1990a, b) bedload relation for mixures
| m<sup>3</sup> / s
|  
|-
| Φ<sub>sgo</sub>
| equals to  τ<sub>sg</sub> <sup>*</sup> / τ<sub>ssrg</sub> <sup>*</sup>
| -
|- 
| ψ<sub>l</sub>
| grain sizes on the base-2 logarithmic ψ scale for bedload
| -
|- 
| ψ<sub>lx</sub>
| grain sizes on the base-2 logarithmic ψ scale for bedload such that x percent of the material is finer
| -
|-
| D<sub>g</sub>
| geometric mean
| L
|-
| σ<sub>g</sub>
| geometric standard deviation
| -
|-
|-
| S
| D<sub>x</sub>
| bed slope
| diameter such that x% of the distribution is finer
| L
|- 
| n<sub>x</sub>
| user-specified dimensionless roughness factor (the author suggests a value of 2)
| -
|-
| k<sub>s</sub>
| roughness height of the channel
| -
| -
|-
|-
| B
| B
| channel width
| channel width
| m
| L
|-  
|-
| n
| U
| roughness factor
| mean velocity
| L / T
|-
| α<sub>r</sub>
| coefficient in Manning-Strickler resistance relation, equals to 8.1
| -
|-
| Q
| water discharge
| L<sup>3</sup> / T
|-
| S
| channel slope
| -
| -
|- 
| Φ
|
|
|-
|-
| Φ<sub>sgo</sub>
| c<sub>1</sub>
|  
| user-specified coefficient
| -
| -
|- 
| τ<sub>sgo</sub>
|
|
|-
|-
| ψ<sub>l</sub>
| n<sub>k</sub>
|  
| parameter such that k<sub>s</sub> = n<sub>k</sub> D<sub>s90</sub>
| -
| -
|- 
| σ<sub>l</sub>
|
|
|-
|-
| ψ<sub>lx</sub>
| D<sub>s90</sub>
|  
| sediment size such that 90 % of the material in the surface layer is finer
| -
| -
|-
|-
|}
|}


Line 387: Line 388:
|-
|-
| q<sub>bT</sub>
| q<sub>bT</sub>
| volume bedload transport per unit width
| total volume gravel bedload transport rate per unit width summed over all sizes
| m<sup>2</sup> / s
| L<sup>2</sup> / T
|-
| τ<sub>sg</sub> <sup>*</sup>
| Shields number based on surface geometric mean size
| -
|-
| D<sub>sg</sub>
| geometric mean size of the surface material
| L
|-
|-
| D<sub>g</sub>
| σ<sub>sg</sub>
| geometric mean
| geometric standard deviations of the surface materials
| mm
| -
|-
|-
| τ<sub>g</sub> <sup>*</sup>
| σ
| shields number based on surface geometric mean size
| arithmetic standard deviations of the surface materials
| kg / (m s)
| -
|-
|-
| σ<sub>g</sub>
| σ<sub>lg</sub>
| geometric standard deviation
| geometric standard deviation of the bedload
| -
| -
|- 
| D<sub>sx</sub>
| grain size in the surface material, such that x percentage of the material is finer
| L
|-
|-
| D<sub>x</sub>
| D<sub>lx</sub>
| diameter such that x% of the distribution is finer
| grain size in the bedload material, such that x percentage of the material is finer
| mm
| L
|-
| σ<sub>l</sub>
| arithmetic standard deviations of bedload materials
|
|-
|-
| H
| H
| water depth
| water depth
| m
| L
|-
|-  
| u<sup>*</sup>
| shear velocity
| m / s
|-
|}
|}
   </div>
   </div>
Line 420: Line 433:
==Notes==
==Notes==
* Note on the program
* Note on the program
It is used for computing the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed) (D<sub>b,i</sub>, F<sub>f,i</sub>), i = 1..N+1, a specific gravity of the sediment (here equal to R + 1), a water discharge Q, a channel width B and a streamwise bed slope S. The output includes the value of q<sub>bT</sub>, the Shields stress τ<sub>sg</sub> <sup>∗</sup> based on the surface geometric mean size, the flow depth H, the shear velocity u<sup>∗</sup>, the bedload grain size distribution (D<sub>d,i</sub>, p<sub>f,i</sub>) and the values D<sub>lg</sub>, σ<sub>lg</sub>, D<sub>l90</sub>, D<sub>l70</sub>, D<sub>l50</sub> and D<sub>l30</sub> for the bedload, as well as the corresponding values for the surface ,material, D<sub>sg</sub>, σ<sub>sg</sub>, D<sub>s90</sub>, D<sub>s70</sub>, D<sub>s50</sub> and D<sub>s30</sub>.
The channel is assumed to be rectangular, with the vertical sidewalls having the same roughness as the bed.  
 
The channel is assumed to be rectangular, with the vertical sidewalls having the same roughness as the bed.  The roughness height k<sub>s</sub> is computed using equation 31. Here n<sub>k</sub> is a user-specified dimensionless roughness factor.  The author suggests a value of 2 for n<sub>k</sub>. 
 
Depth is computed according to the relation for momentum balance in the bed region using equation 25 applicable to normal (steady, streamwise uniform) flow.  Flow resistance on the bed region is computed using a Manning-Strickler resistance relation (equation 26).
 
Equation 28, 29 is solved iteratively for H in the code.  Once H is known, the shear velocity u<sub>∗</sub> is computed from equation 25, and the calculation proceeds using the same algorithm as “Acronym1”.  It is implicitly assumed in the calculation that all of the boundary shear stress consists of skin friction, with form drag neglected.
 
* Note on equations
In order to implement the equations 9~15, it is necessary to specify a) the surface grain size distribution (D<sub>f</sub>,i, F<sub>f</sub>,i) and b) the shear velocity u<sub>∗</sub>.  This results in a predicted values of q<sub>bi</sub>.
 
If the boundary shear stress at the bed includes a component of form drag, the component must be removed before computing u<sub>∗</sub>.
 
Once the parameters q<sub>bi</sub> are known the total volume bedload transport rate per unit width q<sub>bT</sub> and the fractions pi in the bedload can be calculated as equations 16, 17.
 
The results are presented in terms of q<sub>bT</sub> and the grain size distribution of the bedload, which is computed from the values of pi.  These same fractions pi are used to compute the geometric mean and geometric standard deviation of the bedload D<sub>lg</sub> and σ<sub>lg</sub>, respectively, from the relations of equations 18, 19, 20, 21.


The percent finer in the bedload p<sub>f,i</sub> for the grain size D<sub>f,i</sub> is obtained from the fractions p<sub>i</sub> as follows:
Depth is computed according to the relation for momentum balance in the bed region using equation 26 applicable to normal (steady, streamwise uniform) flow.  Flow resistance on the bed region is computed using a Manning-Strickler resistance relation.
p<sub>f,1</sub> = 100
p<sub>f,i</sub> = p<sub>f,i-1</sub> - 100 p<sub>i-1</sub> (i=2~N+1)


Let D<sub>sx</sub> and D<sub>lx</sub> denote sizes in the surface and bedload material, respectively, such that x percent of the material is finer.  For example, if x = 50 then Ds50 and D<sub>l50</sub> denote the median sizes of the surface and bedload material, respectively.  Once F<sub>f,i</sub> is specified (p<sub>f</sub>,i is computed) the value D<sub>sx</sub> (D<sub>lx</sub>) can be computed by interpolation.  The interpolation should be done using a logarithmic scale for grain sizeFor example, consider the computation of Dlx where p<sub>f,i</sub> ≤ x ≤ p<sub>f,i+1</sub>.  Then we got equation 22, 23, using equation 24.
Equation 29, 30 is solved iteratively for H in the code.  Once H is known, the shear velocity u<sub></sub> is computed from equation 26, and the calculation proceeds using the same algorithm as “Acronym1”It is implicitly assumed in the calculation that all of the boundary shear stress consists of skin friction, with form drag neglected.


==Examples==
==Examples==
Line 447: Line 443:


<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
* <span class="remove_this_tag">Upload file: http://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Upload file: https://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>


Line 456: Line 452:


==References==
==References==
* Parker, G. 1990a Surface based bedload transport relation for gravel rivers.  Journal of Hydraulic Research, 28(4), 417 436.
* Parker, G., 1990a. Surface based bedload transport relation for gravel rivers.  Journal of Hydraulic Research, 28(4), 417~436.(DOI:[http://dx.doi.org/10.1080/00221689009499058 10.1080/00221689009499058])


* Parker, G. 1990b The "ACRONYM" series of Pascal programs for computing bedload transport in gravel rivers.  External Memorandum M 220, St. Anthony Falls Hydraulic Laboratory, University of Minnesota.
* Parker, G.,1990b. The "ACRONYM" series of Pascal programs for computing bedload transport in gravel rivers.  External Memorandum M 220, St. Anthony Falls Hydraulic Laboratory, University of Minnesota.


==Links==
==Links==
* [[http://csdms.colorado.edu/wiki/Model:Acronym1R Model:Acronym1R]]
* [[Model:Acronym1R]]


[[Category:Utility components]]
[[Category:Utility components]]

Latest revision as of 17:15, 19 February 2018

The CSDMS Help System

Acronym1R

"Acronym1_R” combines Acronym1 scheme with a Manning-Strickler relation for flow resistance.

Model introduction

Acronym1_R is used for computing the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed) (Db,i, Ff,i), i = 1..N+1, a specific gravity of the sediment (here equal to R + 1), a water discharge Q, a channel width B and a streamwise bed slope S.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
Submerged Specific Gravity -
Water discharge m3 / s
Bed Slope -
Channel Width m
Roughness Factor -
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Characteristic grain size for the ith grain size range (spans (Db,i, Db,i+1)) (for i=1...N)
[math]\displaystyle{ D_{i}= \sqrt{ D_{b, i} D_{b, i+1} } }[/math] (1)
  • Fraction in the surface layer Fi for the ith grain size range (for i=1...N)
[math]\displaystyle{ F_{i}= \left ( F_{f, i} - F_{f, i+1} \right ) / 100 }[/math] (2)
  • Grain Size on the base-2 logarithmic scale:
[math]\displaystyle{ \Psi= LN_{2}\left (D\right) = {\frac{log_{10}\left (D\right)}{log_{10}\left (2\right)}} }[/math] (3)
  • Geometric mean size of the surface material
[math]\displaystyle{ D_{sg}=2^\left (\bar\Psi_{s} \right ) }[/math] (4)
[math]\displaystyle{ \bar\Psi_{s}= \sum\limits_{i=1}^N \Psi_{i} F{i} }[/math] (5)
  • Geometric standard deviations of the surface material
[math]\displaystyle{ \sigma_{sg}= 2 ^\sigma }[/math] (6)
  • Arithmetic standard deviations of the surface material
[math]\displaystyle{ \sigma ^2= \sum\limits_{i=1}^N \left (\Psi_{i} - \bar\Psi \right )^2 F_{i} }[/math] (7)
  • Bedload transport relation
[math]\displaystyle{ W_{i}^*= {\frac{Rgq_{bi}}{F_{i}u_{*} ^3}}= 0.00218 G \left (\Phi \right ) }[/math] (8)
[math]\displaystyle{ \phi= \omega \Phi_{sgo} \left ( {\frac{D_{i}} {D_{sg}}} \right )^ \left (-0.0951 \right ) }[/math] (9)
[math]\displaystyle{ \Phi_{sgo}= {\frac{\tau_{sg} ^*}{\tau_{ssrg} ^*}} }[/math] (10)
[math]\displaystyle{ \tau_{sg} ^*={\frac{u_{*} ^2}{R g D_{sg}}} }[/math] (11)
  • Φ> 1.59
[math]\displaystyle{ G \left ( \Phi \right )= 5474 \left ( 1 - {\frac{0.853}{\Phi}} \right ) ^ \left (4.5 \right ) }[/math] (12)
  • 1<=Φ<=1.59
[math]\displaystyle{ G\left (\Phi \right )= exp[ 14.2\left ( \Phi - 1\right ) - 9.28 \left ( \Phi - 1 \right )^2 ] }[/math] (13)
  • Φ< 1
[math]\displaystyle{ G\left (\Phi \right )= \Phi ^\left (14.2 \right ) }[/math] (14)
[math]\displaystyle{ \omega= 1 + {\frac{\sigma}{\sigma_{O} \left ( \Phi_{sgo} \right ) }} [ \omega_{O} \left ( \Phi_{sgo} \right ) - 1 ] }[/math] (15)
  • total volume gravel bedload transport rate per unit width summed over all sizes
[math]\displaystyle{ q_{bT}= \sum\limits_{i=1}^N q_{bi} }[/math] (16)
  • fraction of gravel bedload in the ith grain size range
[math]\displaystyle{ p_{i}= {\frac{q_{bi}}{q_{bT}}} }[/math] (17)
  • Geometric mean of the bedload
[math]\displaystyle{ D_{lg}= 2 ^\left (\bar\psi_{l} \right ) }[/math] (18)
[math]\displaystyle{ \Psi_{l}= \sum\limits_{i=1}^\left (Np \right ) \Psi_{i} p_{i} }[/math] (19)
  • Geometric standard deviation of the bedload
[math]\displaystyle{ \delta_{lg}= 2 ^\left ( \delta_{l} \right ) }[/math] (20)
[math]\displaystyle{ \delta_{l} ^2= \sum\limits_{i=1}^\left (Np \right ) \left ( \Psi_{i} - \bar\Psi_{l} \right )^2 p_{i} }[/math] (21)
  • Grain sizes in the bedload material
[math]\displaystyle{ D_{lx}= 2 ^\left (\Psi_{lx} \right ) }[/math] (22)
[math]\displaystyle{ \Psi_{lx}= \Psi_{b, i+1} + {\frac{\Psi_{b, j} - \Psi_{b, i+1}}{p_{f, i} - p_{f, i+1}}}\left ( x - p_{f, i+1} \right ) }[/math] (23)
[math]\displaystyle{ \Psi_{b, i}= Ln_{2} \left ( D_{b, j} \right ) }[/math] (24)
  • Roughness height of the channel (including bed and vertical sidewalls)
[math]\displaystyle{ k_{s} = n_{k} D_{s90} }[/math] (25)
[math]\displaystyle{ \tau_{b} B = \rho u_{*} ^2 B = \rho g S \left ( H B - H ^2 \right ) }[/math] (26)
[math]\displaystyle{ {\frac{U}{u_{*}}} = \alpha _{r} \left ( {\frac{H}{k_{s}}} \right )^ {\frac{1}{6}} }[/math] (27)
[math]\displaystyle{ U = {\frac{Q}{BH}} }[/math] (28)
[math]\displaystyle{ H = \left ({\frac{k_{s} ^ {\frac{1}{3}} Q ^2}{\alpha_{r} ^2 g B^2 S}} \right )^ {\frac{3}{10}} c_{1} }[/math] (29)
[math]\displaystyle{ c_{1}= \left ( 1 - {\frac{H}{B}} \right ) ^ \left ({\frac{-3}{10}}\right ) }[/math] (30)

Notes

  • Note on the program

The channel is assumed to be rectangular, with the vertical sidewalls having the same roughness as the bed.

Depth is computed according to the relation for momentum balance in the bed region using equation 26 applicable to normal (steady, streamwise uniform) flow. Flow resistance on the bed region is computed using a Manning-Strickler resistance relation.

Equation 29, 30 is solved iteratively for H in the code. Once H is known, the shear velocity u is computed from equation 26, and the calculation proceeds using the same algorithm as “Acronym1”. It is implicitly assumed in the calculation that all of the boundary shear stress consists of skin friction, with form drag neglected.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Parker, G., 1990a. Surface based bedload transport relation for gravel rivers. Journal of Hydraulic Research, 28(4), 417~436.(DOI:10.1080/00221689009499058)
  • Parker, G.,1990b. The "ACRONYM" series of Pascal programs for computing bedload transport in gravel rivers. External Memorandum M 220, St. Anthony Falls Hydraulic Laboratory, University of Minnesota.

Links