Model help:Acronym1R: Difference between revisions

From CSDMS
(Created page with "<!-- How to create a new "Model help" page: 1) Log in to the wiki 2) Create a new page for each model, by using the following URL: * http://csdms.colorado.edu/wiki/Model help:...")
 
m (Text replacement - "http://csdms.colorado.edu/wiki/" to "https://csdms.colorado.edu/wiki/")
 
(9 intermediate revisions by 2 users not shown)
Line 3: Line 3:
1) Log in to the wiki
1) Log in to the wiki
2) Create a new page for each model, by using the following URL:
2) Create a new page for each model, by using the following URL:
   * http://csdms.colorado.edu/wiki/Model help:<modelname>
   * https://csdms.colorado.edu/wiki/Model help:<modelname>
   * Replace <modelname> with the name of a model
   * Replace <modelname> with the name of a model
3) Than follow the link "edit this page"
3) Than follow the link "edit this page"
Line 14: Line 14:
__NOTOC__
__NOTOC__
==<big><big>{{PAGENAME}}</big></big>==
==<big><big>{{PAGENAME}}</big></big>==
"Acronym1_R” combines Acronym1 scheme with a Manning-Strickler relation for flow resistance. It first computes a value of u<sub>∗</sub> from specified values of the water discharge Q<sub>w</sub>, the channel width B and the bed slope H.  It then implements the same code as “Acronym1”. 
"Acronym1_R” combines Acronym1 scheme with a Manning-Strickler relation for flow resistance.  


==Model introduction==
==Model introduction==
“Acronym1_R” is used for computing the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed) (D<sub>b,i</sub>, F<sub>f,i</sub>), i = 1..N+1, a specific gravity of the sediment (here equal to R + 1), a water discharge Q, a channel width B and a streamwise bed slope S.
Acronym1_R is used for computing the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed) (D<sub>b,i</sub>, F<sub>f,i</sub>), i = 1..N+1, a specific gravity of the sediment (here equal to R + 1), a water discharge Q, a channel width B and a streamwise bed slope S.


<div id=CMT_MODEL_PARAMETERS>
<div id=CMT_MODEL_PARAMETERS>
==Model parameters==
==Model parameters==
= First tab header =
= Input Files and Directories =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|Input directory
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|path to input files
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"|
|-
|Site prefix
|Site prefix for Input/Output files
|
|-
|Case prefix
|Case prefix for Input/Output files
|
|-
|}
|}


= Second tab header =
= Run Parameters =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|Submerged Specific Gravity
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"| -
|-
|Water discharge
|
| m<sup>3</sup> / s
|-
|Bed Slope
|
| -
|-
|Channel Width
|
| m
|-
|Roughness Factor
|
| -
|-
|}
|}


= Etc. tab header =
= About =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
!Parameter!!Description!!Unit
|-valign="top"
|width="20%"|Model name
|width="60%"|name of the model
|width="20%"| -
|-
|Author name
|name of the model author
| -
|-
|}
<headertabs/>
<headertabs/>
</div>


==Uses ports==
==Uses ports==
Line 52: Line 90:


==Main equations==
==Main equations==
* Grain Size:
* Characteristic grain size for the ith grain size range (spans (D<sub>b,i</sub>, D<sub>b,i+1</sub>)) (for i=1...N)
::::{|
::::{|
|width=500px|<math>\Psi= LN_{2}\left (D\right) = {\frac{log_{10}\left (D\right)}{log_{10}\left (2\right)}} </math>
|width=530px|<math>D_{i}= \sqrt{ D_{b, i} D_{b, i+1} }   </math>
|width=50px align="right"|(1)
|width=50p=x align="right"|(1)
|}
|}
* Fraction in the surface layer F<sub>i</sub> for the ith grain size range (for i=1...N)
::::{|
::::{|
|width=500px|<math>\Psi_{i}= LN_{2}\left ( D_{i}\right) = {\frac{log_{10}\left (D_{i}\right)}{log_{10}\left (2\right)}} </math>
|width=530px|<math>F_{i}= \left ( F_{f, i} - F_{f, i+1} \right ) / 100  </math>
|width=50px align="right"|(2)
|width=50p=x align="right"|(2)
|}
|}
* Grain Size on the base-2 logarithmic scale:
::::{|
::::{|
|width=530px|<math>D_{i}= Sqrt \left (D_{b, i} D_{b, i+1} \right )   </math>
|width=500px|<math>\Psi= LN_{2}\left (D\right) = {\frac{log_{10}\left (D\right)}{log_{10}\left (2\right)}} </math>
|width=50p=x align="right"|(3)
|width=50px align="right"|(3)
|}
|}
* Geometric mean size of the surface material
::::{|
::::{|
|width=530px|<math>F_{i}= \left ( F_{f, i} - F_{f, i+1} \right ) / 100  </math>
|width=500px|<math>D_{sg}=2^\left (\bar\Psi_{s} \right ) </math>
|width=50p=x align="right"|(4)
|width=50px align="right"|(4)
|}
|}
::::{|
::::{|
|width=500px|<math>D_{sg}=2^\Psi_{s} </math>
|width=500px|<math>\bar\Psi_{s}= \sum\limits_{i=1}^N \Psi_{i} F{i} </math>
|width=50px align="right"|(5)
|width=50px align="right"|(5)
|}
|}
* Geometric standard deviations of the surface material
::::{|
::::{|
|width=500px|<math>\Psi_{s}= \Sigma \Psi_{i} F{i} </math>
|width=500px|<math>\sigma_{sg}= 2 ^\sigma </math>
|width=50px align="right"|(6)
|width=50px align="right"|(6)
|}
|}
* Arithmetic standard deviations of the surface material
::::{|
::::{|
|width=500px|<math>\sigma_{sg}= 2 ^\sigma </math>
|width=500px|<math>\sigma ^2= \sum\limits_{i=1}^N \left (\Psi_{i} - \bar\Psi \right )^2 F_{i}  </math>
|width=50px align="right"|(7)
|width=50px align="right"|(7)
|}
|}
* Bedload transport relation
::::{|
::::{|
|width=500px|<math>\sigma ^2= \Sigma \left (\Psi_{i} - \Psi \right )^2 F_{i} </math>
|width=530px|<math>W_{i}^*= {\frac{Rgq_{bi}}{F_{i}u_{*} ^3}}= 0.00218 G \left (\Phi \right )  </math>
|width=50px align="right"|(8)
|width=50p=x align="right"|(8)
|}
|}
::::{|
::::{|
|width=530px|<math>W_{i}^*= {\frac{Rgq_{bi}}{F_{i}u_{*} ^3}}= 0.00218 G \left (\Phi \right )  </math>
|width=530px|<math>\phi= \omega \Phi_{sgo} \left ( {\frac{D_{i}} {D_{sg}}} \right )^ \left (-0.0951 \right )  </math>
|width=50p=x align="right"|(9)
|width=50p=x align="right"|(9)
|}
|}
::::{|
::::{|
|width=530px|<math>\phi= \omega \phi_{sgo} \left ( {\frac{D_{i}} {D_{sg}}} \right )^ \left (-0.0951 \right )  </math>
|width=530px|<math> \Phi_{sgo}= {\frac{\tau_{sg} ^*}{\tau_{ssrg} ^*}}   </math>
|width=50p=x align="right"|(10)
|width=50p=x align="right"|(10)
|}
|}
::::{|
::::{|
|width=530px|<math> \Phi= {\frac{\tau_{sg} ^*}{\tau_{ssrg} ^*}}  </math>
|width=530px|<math>\tau_{sg} ^*={\frac{u_{*} ^2}{R g D_{sg}}}  </math>
|width=50p=x align="right"|(11)
|width=50p=x align="right"|(11)
|}
|}
* Φ> 1.59
::::{|
::::{|
|width=530px|<math>\tau_{sg} ^*={\frac{u_{*} ^2}{Rg D_{sg}}</math>
|width=530px|<math> G \left ( \Phi \right )= 5474 \left ( 1 - {\frac{0.853}{\Phi}} \right ) ^ \left (4.5 \right )  </math>
|width=50p=x align="right"|(12)
|width=50p=x align="right"|(12)
|}
|}
* φ> 1.59
* 1<=Φ<=1.59
::::{|
::::{|
|width=530px|<math> G \left ( \Phi \right )= 5474 \left ( 1 - {\frac{0.853}{\Phi}} \right ) ^ \left (4.5 \right )  </math>
|width=530px|<math> G\left (\Phi \right )= exp[ 14.2\left ( \Phi - 1\right ) - 9.28 \left ( \Phi - 1 \right )^2  ] </math>
|width=50p=x align="right"|(13)
|width=50p=x align="right"|(13)
|}
|}
* 1<=φ<=1.59
* Φ< 1
::::{|
::::{|
|width=530px|<math> G\left (\Phi \right )= exp\left ( 14.2\left ( \Phi - 1\right ) - 9.28 \left ( \Phi - 1 \right )^2  \right )  </math>
|width=530px|<math> G\left (\Phi \right )= \Phi ^\left (14.2 \right )  </math>
|width=50p=x align="right"|(14)
|width=50p=x align="right"|(14)
|}
|}
* φ< 1
::::{|
::::{|
|width=530px|<math> G\left (\Phi \right )= \Phi ^\left (14.2 \right )  </math>
|width=530px|<math>\omega= 1 + {\frac{\sigma}{\sigma_{O} \left ( \Phi_{sgo} \right ) }} [ \omega_{O} \left ( \Phi_{sgo} \right ) - 1 ] </math>
|width=50p=x align="right"|(15)
|width=50p=x align="right"|(15)
|}
|}
* total volume gravel bedload transport rate per unit width summed over all sizes
::::{|
::::{|
|width=530px|<math>\omega= 1 + {\frac{\sigma}{\sigma_{O} \left ( \Phi_{sgo} \right ) }} \left ( \omega_{O} \left ( \Phi_{sgo} \right ) - 1 \right )  </math>
|width=530px|<math>q_{bT}= \sum\limits_{i=1}^N q_{bi}   </math>
|width=50p=x align="right"|(16)
|width=50p=x align="right"|(16)
|}
|}
* fraction of gravel bedload in the ith grain size range
::::{|
::::{|
|width=530px|<math>q_{bT}= \Sigma q_{bi}  </math>
|width=530px|<math>p_{i}= {\frac{q_{bi}}{q_{bT}}}  </math>
|width=50p=x align="right"|(17)
|width=50p=x align="right"|(17)
|}
|}
* Geometric mean of the bedload
::::{|
::::{|
|width=530px|<math>p_{i}= {\frac{q_{bi}}{q_{bT}}}  </math>
|width=530px|<math>D_{lg}= 2 ^\left (\bar\psi_{l} \right )   </math>
|width=50p=x align="right"|(18)
|width=50p=x align="right"|(18)
|}
|}
::::{|
::::{|
|width=530px|<math>D_{lg}= 2 ^\left (\psi_{l} \right )  </math>
|width=530px|<math>\Psi_{l}= \sum\limits_{i=1}^\left (Np \right ) \Psi_{i} p_{i} </math>
|width=50p=x align="right"|(19)
|width=50p=x align="right"|(19)
|}
|}
* Geometric standard deviation of the bedload
::::{|
::::{|
|width=530px|<math>\Psi_{l}= \Sigma \Psi_{i} p_{i}  </math>
|width=530px|<math>\delta_{lg}= 2 ^\left ( \delta_{l} \right ) </math>
|width=50p=x align="right"|(20)
|width=50p=x align="right"|(20)
|}
|}
::::{|
::::{|
|width=530px|<math>\delta_{lg}= 2 ^\left ( \delta_{l} \right ) </math>
|width=530px|<math>\delta_{l} ^2= \sum\limits_{i=1}^\left (Np \right ) \left ( \Psi_{i} - \bar\Psi_{l} \right )^2 p_{i}  </math>
|width=50p=x align="right"|(21)
|width=50p=x align="right"|(21)
|}
|}
* Grain sizes in the bedload material
::::{|
::::{|
|width=530px|<math>\delta_{l} ^2= \Sigma \left ( \Psi_{i} - \Psi_{l} \right )^2 p_{i}   </math>
|width=530px|<math>D_{lx}= 2 ^\left (\Psi_{lx} \right )  </math>
|width=50p=x align="right"|(22)
|width=50p=x align="right"|(22)
|}
|}
::::{|
::::{|
|width=530px|<math>D_{lx}= 2 ^\left (\Psi_{lx} \right )   </math>
|width=530px|<math>\Psi_{lx}= \Psi_{b, i+1} + {\frac{\Psi_{b, j} - \Psi_{b, i+1}}{p_{f, i} - p_{f, i+1}}}\left ( x - p_{f, i+1} \right ) </math>
|width=50p=x align="right"|(23)
|width=50p=x align="right"|(23)
|}
|}
::::{|
::::{|
|width=530px|<math>\Psi_{lx}= \Psi_{b, i+1} + {\frac{\Psi_{b, j} - \Psi_{b, i+1}}{p_{f, i} - p_{f, i+1}}}\left ( x - p_{f, i+1} \right ) </math>
|width=530px|<math>\Psi_{b, i}= Ln_{2} \left ( D_{b, j} \right )   </math>
|width=50p=x align="right"|(24)
|width=50p=x align="right"|(24)
|}
|}
* Roughness height of the channel (including bed and vertical sidewalls)
::::{|
::::{|
|width=530px|<math>\Psi_{b, i}= Ln_{2} \left ( D_{b, j} \right )  </math>
|width=530px|<math> k_{s} = n_{k} D_{s90} </math>
|width=50p=x align="right"|(25)
|width=50p=x align="right"|(25)
|}
|}
Line 175: Line 225:
|width=530px|<math>c_{1}= \left ( 1 - {\frac{H}{B}} \right ) ^ \left ({\frac{-3}{10}}\right ) </math>
|width=530px|<math>c_{1}= \left ( 1 - {\frac{H}{B}} \right ) ^ \left ({\frac{-3}{10}}\right ) </math>
|width=50p=x align="right"|(30)
|width=50p=x align="right"|(30)
|}
::::{|
|width=530px|<math>k_{s} = n_{k} D_{s90} </math>
|width=50p=x align="right"|(31)
|}
|}


Line 186: Line 232:
{| {{Prettytable}} class="wikitable sortable"
{| {{Prettytable}} class="wikitable sortable"
!Symbol!!Description!!Unit
!Symbol!!Description!!Unit
|-
| D
| grain size
| L
|-
|-
| D<sub>i</sub>
| D<sub>i</sub>
| characteristic grain size (for i =1~N)
| characteristic grain size for the ith grain size range (i=1...N)
| mm
| L
|-
|-
| F<sub>i</sub>
| F<sub>i</sub>
| surface layer (for i =1~N)
| fraction in surface layer for the ith grain size range(for i =1...N)
| -
| -
|-
|-
| ψ
| τ<sub>ssrg</sub> <sup>*</sup>
| grain sizes
| equals to 0.0386
| mm
|-
| D<sub>sg</sub>
| geometric mean size of the surface material
| mm
|-
| σ<sub>sg</sub>
| geometric standard deviations
| -
| -
|-
|-
| σ
| ψ
| arithmetic standard deviations
| grain sizes on the base-2 logarithmic ψ scale
| -
|  
|-
|-
| ρ
| ρ
| density of water
| density of water
| kg/m<sup>3</sup>
| M / L<sup>3</sup>
|-
|-
| ρ<sub>s</sub>
| ρ<sub>s</sub>
| density of sediment
| density of sediment
| kg/m<sup>3</sup>
| M / L<sup>3</sup>
|-
|-
| R
| R
| submerged specific density of sediment
| submerged specific density of sediment, equals to (ρ<sub>s</sub> /ρ-1)
| -
| -
|-
| u
| shear velocity of flow
| L / T
|-
|-
| g
| g
| acceleration of gravity
| acceleration of gravity
| m / s<sup>2</sup>
| L / T<sup>2</sup>
|-
|-
| τ<sub>b</sub>
| τ<sub>b</sub>
| boundary shear stress on the bed
| boundary shear stress on the bed
| kg / (m s)
| M / (L T)
|-
| u<sub>*</sub>
| shear velocity on the bed, equals to sqrt(τ<sub>b</sub> / ρ )
| L / T
|-
|-
| u
| p<sub>i</sub>
| shear velocity on the bed
| fraction of gravel bedload in the ith grain size range
| m / s
| L
|-
| D<sub>lg</sub>
| geometric mean of the bedload
| L
|-
| ψ<sub>s</sub>
| equals to τ<sub>bs</sub> / τ<sub>b</sub>
|
|-
| W<sub>i</sub> <sup>*</sup>
| dimensionless bedload transport rate for ith grain size
| -
|-
|-
| q<sub>bi</sub>
| q<sub>bi</sub>
| volume gravel bedload transport per unit width of grains in the ith size range
| volume gravel bedload transport per unit width of grains in the ith size range
| m <sup>2</sup>
| L <sup>2</sup>
|- 
| ω
| straining relation in Parker (1990a,b) bedload relation for mixtures
|
|-
| G(Φ)
| function in Parker (1990a, b) and Wilcock and Crowe (2003) bedload relation for gravel mixture
|
|-
|-
| u<sub>*</sub>
| ω<sub>0</sub>
| shear velocity
| function relation in Parker (1990a, b) bedload relation for mixture
| m / s
| -
|-
|-
| D<sub>lg</sub>
| Φ
| geometric mean of the bedload
| parameter in Parker (1990a, b) bedload relation for mixures
| mm
|  
|-
|-
| σ<sub>lg</sub>
| Φ<sub>sgo</sub>
| geometric standard deviation of the bedload
| equals to  τ<sub>sg</sub> <sup>*</sup> / τ<sub>ssrg</sub> <sup>*</sup>
| -
|- 
| ψ<sub>l</sub>
| grain sizes on the base-2 logarithmic ψ scale for bedload
| -
| -
|-   
|-   
| D<sub>sx</sub>
| ψ<sub>lx</sub>
| size in the surface material, such that x percentage of the material is finer
| grain sizes on the base-2 logarithmic ψ scale for bedload such that x percent of the material is finer
| mm
| -
|-
| D<sub>g</sub>
| geometric mean
| L
|-
|-
| D<sub>lx</sub>
| σ<sub>g</sub>
| size in the bedload material, such that x percentage of the material is finer
| geometric standard deviation
| -
| -
|-
| D<sub>x</sub>
| diameter such that x% of the distribution is finer
| L
|-   
|-   
| D<sub>sx</sub>
| n<sub>x</sub>
| size in the surface material, such that x percentage of the material is finer
| user-specified dimensionless roughness factor (the author suggests a value of 2)
| mm
| -
|-
| k<sub>s</sub>
| roughness height of the channel
| -
|-
| B
| channel width
| L
|-
| U
| mean velocity
| L / T
|-
| α<sub>r</sub>
| coefficient in Manning-Strickler resistance relation, equals to 8.1
| -
|-
|-
| Q
| Q
| water discharge
| water discharge
| m<sup>3</sup>
| L<sup>3</sup> / T
|- 
| B
| channel width
| m
|-
|-
| S
| S
| a streamwise bed slope
| channel slope
| -
|-
| c<sub>1</sub>
| user-specified coefficient
| -
|-
| n<sub>k</sub>
| parameter such that k<sub>s</sub> = n<sub>k</sub> D<sub>s90</sub>
| -
|-
| D<sub>s90</sub>
| sediment size such that 90 % of the material in the surface layer is finer
| -
| -
|-
|-
Line 283: Line 389:
| q<sub>bT</sub>
| q<sub>bT</sub>
| total volume gravel bedload transport rate per unit width summed over all sizes
| total volume gravel bedload transport rate per unit width summed over all sizes
| L<sup>2</sup> / T
|-
| τ<sub>sg</sub> <sup>*</sup>
| Shields number based on surface geometric mean size
| -
| -
|-
|-
| v
| D<sub>sg</sub>
| flow velocity
| geometric mean size of the surface material
| m / s
| L
|-
|-
| τ<sub>sg</sub>
| σ<sub>sg</sub>
| shield stress
| geometric standard deviations of the surface materials
| kg / (m s)
| -
|-
|-
| k<sub>s</sub>
| σ
| roughness height
| arithmetic standard deviations of the surface materials
| -
| -
|-
|-
| n<sub>k</sub>
| σ<sub>lg</sub>
| user-specified dimensionless roughness factor
| geometric standard deviation of the bedload
| -
| -
|- 
| D<sub>sx</sub>
| grain size in the surface material, such that x percentage of the material is finer
| L
|-
|-
| α<sub>r</sub>
| D<sub>lx</sub>
| have the value of 8.1
| grain size in the bedload material, such that x percentage of the material is finer
| -
| L
|-  
| σ<sub>l</sub>
| arithmetic standard deviations of bedload materials
|
|-
|-
| H
| water depth
| L
|-
|}
|}
   </div>
   </div>
Line 310: Line 432:


==Notes==
==Notes==
* Note on equations
* Note on the program
In order to implement the equations 10~16, it is necessary to specify a) the surface grain size distribution (D<sub>f</sub>,i, F<sub>f</sub>,i) and b) the shear velocity u<sub>∗</sub>.  This results in a predicted values of q<sub>bi</sub>.
The channel is assumed to be rectangular, with the vertical sidewalls having the same roughness as the bed.  
 
If the boundary shear stress at the bed includes a component of form drag, the component must be removed before computing u<sub>∗</sub>.
 
Once the parameters q<sub>bi</sub> are known the total volume bedload transport rate per unit width q<sub>bT</sub> and the fractions pi in the bedload can be calculated as equations 17, 18.
 
The results are presented in terms of q<sub>bT</sub> and the grain size distribution of the bedload, which is computed from the values of pi.  These same fractions pi are used to compute the geometric mean and geometric standard deviation of the bedload D<sub>lg</sub> and σ<sub>lg</sub>, respectively, from the relations of equations 19, 20, 21, 22.
 
The percent finer in the bedload p<sub>f,i</sub> for the grain size D<sub>f,i</sub> is obtained from the fractions p<sub>i</sub> as follows:
p<sub>f,1</sub> = 100
p<sub>f,i</sub> = p<sub>f,i-1</sub> - 100 p<sub>i-1</sub> (i=2~N+1)
 
Let D<sub>sx</sub> and D<sub>lx</sub> denote sizes in the surface and bedload material, respectively, such that x percent of the material is finer.  For example, if x = 50 then Ds50 and D<sub>l50</sub> denote the median sizes of the surface and bedload material, respectively.  Once F<sub>f,i</sub> is specified (p<sub>f</sub>,i is computed) the value D<sub>sx</sub> (D<sub>lx</sub>) can be computed by interpolation.  The interpolation should be done using a logarithmic scale for grain size.  For example, consider the computation of Dlx where p<sub>f,i</sub> ≤ x ≤ p<sub>f,i+1</sub>.  Then we got equation 23, 24, using equation 25.
 
The channel is assumed to be rectangular, with the vertical sidewalls having the same roughness as the bed. The roughness height k<sub>s</sub> is computed using equation 31. Here n<sub>k</sub> is a user-specified dimensionless roughness factor.  The author suggests a value of 2 for n<sub>k</sub>. 


Depth is computed according to the relation for momentum balance in the bed region using equation 26 applicable to normal (steady, streamwise uniform) flow.  Flow resistance on the bed region is computed using a Manning-Strickler resistance relation (equation 27).
Depth is computed according to the relation for momentum balance in the bed region using equation 26 applicable to normal (steady, streamwise uniform) flow.  Flow resistance on the bed region is computed using a Manning-Strickler resistance relation.


Equation 29, 30 is solved iteratively for H in the code.  Once H is known, the shear velocity u<sub>∗</sub> is computed from equation 26, and the calculation proceeds using the same algorithm as “Acronym1”.  It is implicitly assumed in the calculation that all of the boundary shear stress consists of skin friction, with form drag neglected.
Equation 29, 30 is solved iteratively for H in the code.  Once H is known, the shear velocity u<sub>∗</sub> is computed from equation 26, and the calculation proceeds using the same algorithm as “Acronym1”.  It is implicitly assumed in the calculation that all of the boundary shear stress consists of skin friction, with form drag neglected.
Line 335: Line 443:


<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
* <span class="remove_this_tag">Upload file: http://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Upload file: https://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>


Line 344: Line 452:


==References==
==References==
* Parker, G. 1990a Surface based bedload transport relation for gravel rivers.  Journal of Hydraulic Research, 28(4), 417 436.
* Parker, G., 1990a. Surface based bedload transport relation for gravel rivers.  Journal of Hydraulic Research, 28(4), 417~436.(DOI:[http://dx.doi.org/10.1080/00221689009499058 10.1080/00221689009499058])


* Parker, G. 1990b The "ACRONYM" series of Pascal programs for computing bedload transport in gravel rivers.  External Memorandum M 220, St. Anthony Falls Hydraulic Laboratory, University of Minnesota.
* Parker, G.,1990b. The "ACRONYM" series of Pascal programs for computing bedload transport in gravel rivers.  External Memorandum M 220, St. Anthony Falls Hydraulic Laboratory, University of Minnesota.


==Links==
==Links==
* [[http://csdms.colorado.edu/wiki/Model:Acronym1R Model:Acronym1R]]
* [[Model:Acronym1R]]


[[Category:Utility components]]
[[Category:Utility components]]

Latest revision as of 17:15, 19 February 2018

The CSDMS Help System

Acronym1R

"Acronym1_R” combines Acronym1 scheme with a Manning-Strickler relation for flow resistance.

Model introduction

Acronym1_R is used for computing the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed) (Db,i, Ff,i), i = 1..N+1, a specific gravity of the sediment (here equal to R + 1), a water discharge Q, a channel width B and a streamwise bed slope S.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
Submerged Specific Gravity -
Water discharge m3 / s
Bed Slope -
Channel Width m
Roughness Factor -
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Characteristic grain size for the ith grain size range (spans (Db,i, Db,i+1)) (for i=1...N)
[math]\displaystyle{ D_{i}= \sqrt{ D_{b, i} D_{b, i+1} } }[/math] (1)
  • Fraction in the surface layer Fi for the ith grain size range (for i=1...N)
[math]\displaystyle{ F_{i}= \left ( F_{f, i} - F_{f, i+1} \right ) / 100 }[/math] (2)
  • Grain Size on the base-2 logarithmic scale:
[math]\displaystyle{ \Psi= LN_{2}\left (D\right) = {\frac{log_{10}\left (D\right)}{log_{10}\left (2\right)}} }[/math] (3)
  • Geometric mean size of the surface material
[math]\displaystyle{ D_{sg}=2^\left (\bar\Psi_{s} \right ) }[/math] (4)
[math]\displaystyle{ \bar\Psi_{s}= \sum\limits_{i=1}^N \Psi_{i} F{i} }[/math] (5)
  • Geometric standard deviations of the surface material
[math]\displaystyle{ \sigma_{sg}= 2 ^\sigma }[/math] (6)
  • Arithmetic standard deviations of the surface material
[math]\displaystyle{ \sigma ^2= \sum\limits_{i=1}^N \left (\Psi_{i} - \bar\Psi \right )^2 F_{i} }[/math] (7)
  • Bedload transport relation
[math]\displaystyle{ W_{i}^*= {\frac{Rgq_{bi}}{F_{i}u_{*} ^3}}= 0.00218 G \left (\Phi \right ) }[/math] (8)
[math]\displaystyle{ \phi= \omega \Phi_{sgo} \left ( {\frac{D_{i}} {D_{sg}}} \right )^ \left (-0.0951 \right ) }[/math] (9)
[math]\displaystyle{ \Phi_{sgo}= {\frac{\tau_{sg} ^*}{\tau_{ssrg} ^*}} }[/math] (10)
[math]\displaystyle{ \tau_{sg} ^*={\frac{u_{*} ^2}{R g D_{sg}}} }[/math] (11)
  • Φ> 1.59
[math]\displaystyle{ G \left ( \Phi \right )= 5474 \left ( 1 - {\frac{0.853}{\Phi}} \right ) ^ \left (4.5 \right ) }[/math] (12)
  • 1<=Φ<=1.59
[math]\displaystyle{ G\left (\Phi \right )= exp[ 14.2\left ( \Phi - 1\right ) - 9.28 \left ( \Phi - 1 \right )^2 ] }[/math] (13)
  • Φ< 1
[math]\displaystyle{ G\left (\Phi \right )= \Phi ^\left (14.2 \right ) }[/math] (14)
[math]\displaystyle{ \omega= 1 + {\frac{\sigma}{\sigma_{O} \left ( \Phi_{sgo} \right ) }} [ \omega_{O} \left ( \Phi_{sgo} \right ) - 1 ] }[/math] (15)
  • total volume gravel bedload transport rate per unit width summed over all sizes
[math]\displaystyle{ q_{bT}= \sum\limits_{i=1}^N q_{bi} }[/math] (16)
  • fraction of gravel bedload in the ith grain size range
[math]\displaystyle{ p_{i}= {\frac{q_{bi}}{q_{bT}}} }[/math] (17)
  • Geometric mean of the bedload
[math]\displaystyle{ D_{lg}= 2 ^\left (\bar\psi_{l} \right ) }[/math] (18)
[math]\displaystyle{ \Psi_{l}= \sum\limits_{i=1}^\left (Np \right ) \Psi_{i} p_{i} }[/math] (19)
  • Geometric standard deviation of the bedload
[math]\displaystyle{ \delta_{lg}= 2 ^\left ( \delta_{l} \right ) }[/math] (20)
[math]\displaystyle{ \delta_{l} ^2= \sum\limits_{i=1}^\left (Np \right ) \left ( \Psi_{i} - \bar\Psi_{l} \right )^2 p_{i} }[/math] (21)
  • Grain sizes in the bedload material
[math]\displaystyle{ D_{lx}= 2 ^\left (\Psi_{lx} \right ) }[/math] (22)
[math]\displaystyle{ \Psi_{lx}= \Psi_{b, i+1} + {\frac{\Psi_{b, j} - \Psi_{b, i+1}}{p_{f, i} - p_{f, i+1}}}\left ( x - p_{f, i+1} \right ) }[/math] (23)
[math]\displaystyle{ \Psi_{b, i}= Ln_{2} \left ( D_{b, j} \right ) }[/math] (24)
  • Roughness height of the channel (including bed and vertical sidewalls)
[math]\displaystyle{ k_{s} = n_{k} D_{s90} }[/math] (25)
[math]\displaystyle{ \tau_{b} B = \rho u_{*} ^2 B = \rho g S \left ( H B - H ^2 \right ) }[/math] (26)
[math]\displaystyle{ {\frac{U}{u_{*}}} = \alpha _{r} \left ( {\frac{H}{k_{s}}} \right )^ {\frac{1}{6}} }[/math] (27)
[math]\displaystyle{ U = {\frac{Q}{BH}} }[/math] (28)
[math]\displaystyle{ H = \left ({\frac{k_{s} ^ {\frac{1}{3}} Q ^2}{\alpha_{r} ^2 g B^2 S}} \right )^ {\frac{3}{10}} c_{1} }[/math] (29)
[math]\displaystyle{ c_{1}= \left ( 1 - {\frac{H}{B}} \right ) ^ \left ({\frac{-3}{10}}\right ) }[/math] (30)

Notes

  • Note on the program

The channel is assumed to be rectangular, with the vertical sidewalls having the same roughness as the bed.

Depth is computed according to the relation for momentum balance in the bed region using equation 26 applicable to normal (steady, streamwise uniform) flow. Flow resistance on the bed region is computed using a Manning-Strickler resistance relation.

Equation 29, 30 is solved iteratively for H in the code. Once H is known, the shear velocity u is computed from equation 26, and the calculation proceeds using the same algorithm as “Acronym1”. It is implicitly assumed in the calculation that all of the boundary shear stress consists of skin friction, with form drag neglected.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Parker, G., 1990a. Surface based bedload transport relation for gravel rivers. Journal of Hydraulic Research, 28(4), 417~436.(DOI:10.1080/00221689009499058)
  • Parker, G.,1990b. The "ACRONYM" series of Pascal programs for computing bedload transport in gravel rivers. External Memorandum M 220, St. Anthony Falls Hydraulic Laboratory, University of Minnesota.

Links