2023 CSDMS meeting-088

From CSDMS
Revision as of 15:01, 20 June 2023 by WikiSysop (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)



(if you haven't already)




Log in (or create account for non-CSDMS members)
Forgot username? Search or email:CSDMSweb@colorado.edu


Browse  abstracts


Transient ecosystem response to climatic variability since the late Pleistocene in central New Mexico modeled with Landlab


Erkan Istanbulluoglu, University of Washington Seattle Washington, United States. erkani@uw.edu
Sai Siddhartha Nudurupati, Jacobs Sacramento California, United States. saisiddu@gmail.com



On a broad scale climate controls the distribution of biomes and sets an upper limit for woody plant canopy cover. During last glacial cycle that peaked ~18,000 years (B.P.) in the Late Pleistocene, the southwestern United States was much wetter and cooler than in the Holocene (last 11,000 years) and today. Since the Last Glacial Maximum, wetter and cooler climate in most arid semiarid regions has generally transitioned to drier and warmer conditions, establishing their characteristic (i.e., today’s native) ecosystems and fire regimes 3,000 - 5,000 years B.P. We use the Landlab earth surface modeling toolkit to explore the implications of the climate since the late Pleistocene on ecosystem patterns, using a calibrated model for conditions prior to the Euro-America settlers. Climate is constructed based on paleoclimatic proxies and weather station data. The controls of seedling dispersal strategies of plants and water availability as mediated by aspect are discussed.