|
|
Line 91: |
Line 91: |
| <!-- Edit the part above to update info on other papers --> | | <!-- Edit the part above to update info on other papers --> |
|
| |
|
| == HEBEM == | | ==Introduction== |
| __TOC__
| |
|
| |
|
| ===Introduction=== | | == History == |
|
| |
|
| === History === | | == Papers == |
|
| |
|
| === Papers === | | == Issues == |
|
| |
|
| === HEBEM Questionnaire === | | == Help == |
|
| |
|
| ==== Contact Information ==== | | == Input Files == |
| {| class="wikitable"
| |
| | class="model_col1"| Model:
| |
| | class="model_col2"| HEBEM
| |
| |-
| |
| | class="model_col1"| Contact person:
| |
| | class="model_col2"| Jeffrey Niemann
| |
| |-
| |
| | class="model_col1"| Institute:
| |
| | class="model_col2"| Colorado State University
| |
| |-
| |
| | class="model_col1"| City:
| |
| | class="model_col2"| Fort Collins, CO
| |
| |-
| |
| | class="model_col1"| Country:
| |
| | class="model_col2"| USA
| |
| |-
| |
| | class="model_col1"| Email:
| |
| | class="model_col2"| jniemann@engr.colostate.edu
| |
| |-
| |
| | class="model_col1"| 2nd person involved:
| |
| | class="model_col2"| Xiangjiang Huang (Developer)
| |
| |-
| |
| | class="model_col1"| 3rd person involved:
| |
| | class="model_col2"| --
| |
| |}
| |
|
| |
|
| ==== Model description ==== | | == Output Files == |
|
| |
|
| {| class="wikitable"
| | == Download == |
| | class="model_col1"| Model type:
| |
| | class="model_col2"| Single model for the terrestrial domain.
| |
| |-
| |
| | class="model_col1"| Description:
| |
| | class="model_col2"| The Hydrologically Enhanced Basin Evolution Model (HEBEM) is a combined hydrologic/geomorphic model. The hydrologic model simulates precipitation with variability, infiltration, evapotranspiration, overland flow, and groundwater flow, thus producing a spatially and temporally varying water discharge Q that drives fluvial processes in the land surface. The geomorphic model accounts for tectonic forcing, hillslope processes, erosion, and sediment transport. The combined model uses multiple time steps for hydrologic and geomorphic processes. Due to its hydrologic representation, the model is able to investigate the interaction between hydrology and geomorpholgy.
| |
| |}
| |
|
| |
|
| ==== Technical information ====
| | == Source == |
| | |
| {| class="wikitable"
| |
| | class="model_col1"| Supported platforms:
| |
| | class="model_col2"| Unix
| |
| |-
| |
| | class="model_col1"| Programming language:
| |
| | class="model_col2"| Fortran77, Fortran90, C
| |
| |-
| |
| | class="model_col1"| Model was developed started from:
| |
| | class="model_col2"| 2001 and development still takes place
| |
| |-
| |
| | class="model_col1"| To what degree will the model become available:
| |
| | class="model_col2"| Not
| |
| |-
| |
| | class="model_col1"| Current license type:
| |
| | class="model_col2"| --
| |
| |-
| |
| | class="model_col1"| Memory requirements:
| |
| | class="model_col2"| --
| |
| |-
| |
| | class="model_col1"| Typical run time:
| |
| | class="model_col2"| --
| |
| |}
| |
| | |
| ==== Input / Output description ====
| |
| | |
| {| class="wikitable"
| |
| | class="model_col1"| Input parameters:
| |
| | class="model_col2"| A grid with initial elevation. Hydrologic time step and geomorphic time step
| |
| | |
| Hydrologic paramters:
| |
| average rainfall intensity, rainall duration, interstorm period, infiltration capacity, porosity, hydraulic conductivity, aquifer depth, specific yield, PET
| |
| | |
| Geomorphic parameters:
| |
| baselevel lowering rate, diffusivity for hillslope processes, weathering rate, parameters for erosion and sediment transport model
| |
| | |
| |-
| |
| | class="model_col1"| Input format:
| |
| | class="model_col2"| ASCII
| |
| |-
| |
| | class="model_col1"| Output parameters:
| |
| | class="model_col2"| elevations of all nodes elevation changes of all nodes
| |
| |-
| |
| | class="model_col1"| Output format:
| |
| | class="model_col2"| ASCII
| |
| |-
| |
| | class="model_col1"| Post-processing software (if needed):
| |
| | class="model_col2"| no
| |
| |-
| |
| | class="model_col1"| Visualization software (if needed):
| |
| | class="model_col2"| no
| |
| |}
| |
| | |
| ==== Process description ====
| |
| | |
| {| class="wikitable"
| |
| | class="model_col1"| Processes represented by model:
| |
| | class="model_col2"| Hydrologic processes:<br>
| |
| Precipitation, infiltration, evapotranspiration, overland flow, saturation-excess runoff, groundwater flow
| |
| | |
| Geomorphic processes:<br>
| |
| Baselevel lowering, weathering, hillslope processes, erosion, sediment transport
| |
| |-
| |
| | class="model_col1"| Key physical parameters & equations:
| |
| | class="model_col2"| Infiltration capacity, water balance equation
| |
| Hydraulic conductivity, 2-D Dupuit groundwater movement equation
| |
| |-
| |
| | class="model_col1"| Length scale & resolution constraints:
| |
| | class="model_col2"| A grid with 100x100 cells, Typical cells with a resolution of 40x40m
| |
| |-
| |
| | class="model_col1"| Time scale & resolution constraints:
| |
| | class="model_col2"| Time scale of 10,000 years. Typical time step is 3 hour
| |
| |-
| |
| | class="model_col1"| Numerical limitations and issues :
| |
| | class="model_col2"| N/A
| |
| |}
| |
| | |
| ==== Testing ====
| |
| | |
| {| class="wikitable"
| |
| | class="model_col1"| Available calibration data sets:
| |
| | class="model_col2"| The hydrologic model was calibrated using hydrologic measurements of WE-38 watershed in PA
| |
| |-
| |
| | class="model_col1"| Available test data sets:
| |
| | class="model_col2"| N/A
| |
| |-
| |
| | class="model_col1"| Ideal data for testing:
| |
| | class="model_col2"| N/A
| |
| |}
| |
| | |
| ==== User groups ====
| |
| | |
| {| class="wikitable"
| |
| | class="model_col1"| Currently or plans for collaborating with:
| |
| | class="model_col2"| None
| |
| |}
| |
| | |
| ==== Documentation ====
| |
| | |
| {| class="wikitable"
| |
| | class="model_col1"| Key papers of the model:
| |
| | class="model_col2"| Huang, X., and J. D. Niemann, How do streamflow generation mechanisms affect watershed hypsometry? Earth Surface Processes and Landforms, 2007, doi:10.1002/esp.1573 (currently published online).<br>Huang, X., and J. D. Niemann, An evaluation of the geomorphically effective event for fluvial processes over long periods, Journal of Geophysical Research, 111, F03015, 2006, doi:10.1029/2006JF000477.<br>Huang, X., and J. D. Niemann, Modeling the potential impacts of groundwater hydrology on long-term drainage basin evolution, Earth Surface Processes and Landforms, 31(14), 1802-1823, 2006, doi:10.1002/esp.1369.
| |
| |-
| |
| | class="model_col1"| Is there a manual available:
| |
| | class="model_col2"| No
| |
| |-
| |
| | class="model_col1"| Model website if any:
| |
| | class="model_col2"| --
| |
| |}
| |
| | |
| ==== Additional comments ====
| |
| | |
| {| class="wikitable"
| |
| | class="model_col1"| Comments:
| |
| | class="model_col2"| None
| |
| |}
| |
| === Issues ===
| |
| | |
| === Help ===
| |
| | |
| === Input Files ===
| |
| | |
| === Output Files ===
| |
| | |
| === Download ===
| |
| | |
| === Source ===
| |
|
| |
|
|
| |
|
| [[Category:Terrestrial]] | | [[Category:Terrestrial]] |