Presenters-0077: Difference between revisions
From CSDMS
m Add youtube views template if missing |
m Text replacement - "\|CSDMS meeting youtube views=\{\{(Youtube_[^}]+)\}\}" to "|CSDMS meeting youtube views={{#explode:{{$1}}| |0}} |CSDMS meeting youtube AverageViews={{#explode:{{$1}}| |1}}" |
||
Line 14: | Line 14: | ||
|CSDMS meeting abstract presentation=Coastal morphological evolution is caused by a wide range of coupled cross-shore and alongshore sediment transport processes associated with short waves, infragravity waves, and wave-induced currents. However, the fundamental transport mechanisms occur within the thin bottom boundary layer and are dictated by turbulence-sediment interaction and inter-granular interactions. In the past decade, significant progresses have been made in modeling sediment transport using Eulerian-Eulerian or Eulerian-Lagrangian two-phase flow approach. However, most of these models are limited to one-dimensional-vertical (1DV) formulation, which is only applicable to Reynolds-averaged sheet flow condition. Consequently, complex processes such as instabilities of the transport layer, bedform dynamics and turbulence-resolving capability cannot be simulated. The main objective of my research study was to develop a multi-dimensional four-way coupled two-phase model for sediment transport that can be used for Reynolds-averaged modeling for large-scale applications or for turbulence-resolving simulations at small-scale. | |CSDMS meeting abstract presentation=Coastal morphological evolution is caused by a wide range of coupled cross-shore and alongshore sediment transport processes associated with short waves, infragravity waves, and wave-induced currents. However, the fundamental transport mechanisms occur within the thin bottom boundary layer and are dictated by turbulence-sediment interaction and inter-granular interactions. In the past decade, significant progresses have been made in modeling sediment transport using Eulerian-Eulerian or Eulerian-Lagrangian two-phase flow approach. However, most of these models are limited to one-dimensional-vertical (1DV) formulation, which is only applicable to Reynolds-averaged sheet flow condition. Consequently, complex processes such as instabilities of the transport layer, bedform dynamics and turbulence-resolving capability cannot be simulated. The main objective of my research study was to develop a multi-dimensional four-way coupled two-phase model for sediment transport that can be used for Reynolds-averaged modeling for large-scale applications or for turbulence-resolving simulations at small-scale. | ||
|CSDMS meeting youtube code=Ytgv4xBJHuA | |CSDMS meeting youtube code=Ytgv4xBJHuA | ||
|CSDMS meeting youtube views={{Youtube_Ytgv4xBJHuA}} | |CSDMS meeting youtube views={{#explode:{{Youtube_Ytgv4xBJHuA}}| |0}} | ||
|CSDMS meeting youtube AverageViews={{#explode:{{Youtube_Ytgv4xBJHuA}}| |1}} | |||
|CSDMS meeting participants=0 | |CSDMS meeting participants=0 | ||
}} | }} |
Latest revision as of 16:34, 11 June 2025
Joint CSDMS-SEN annual meeting 2016: Capturing Climate Change
A Turbulence-Resolving Eulerian Two-Phase Model for Sediment Transport Applications
Abstract
Coastal morphological evolution is caused by a wide range of coupled cross-shore and alongshore sediment transport processes associated with short waves, infragravity waves, and wave-induced currents. However, the fundamental transport mechanisms occur within the thin bottom boundary layer and are dictated by turbulence-sediment interaction and inter-granular interactions. In the past decade, significant progresses have been made in modeling sediment transport using Eulerian-Eulerian or Eulerian-Lagrangian two-phase flow approach. However, most of these models are limited to one-dimensional-vertical (1DV) formulation, which is only applicable to Reynolds-averaged sheet flow condition. Consequently, complex processes such as instabilities of the transport layer, bedform dynamics and turbulence-resolving capability cannot be simulated. The main objective of my research study was to develop a multi-dimensional four-way coupled two-phase model for sediment transport that can be used for Reynolds-averaged modeling for large-scale applications or for turbulence-resolving simulations at small-scale.
Please acknowledge the original contributors when you are using this material. If there are any copyright issues, please let us know (CSDMSweb@colorado.edu) and we will respond as soon as possible.
Of interest for: