Reference:Reference-029781: Difference between revisions
From CSDMS
Bot: Automated import of articles *** existing text overwritten *** |
No edit summary |
||
| Line 17: | Line 17: | ||
|MS_PublicationClusterID=0 | |MS_PublicationClusterID=0 | ||
|Semantic_ID=e76c972310a593c98aa25b8b74385594fd7525a9 | |Semantic_ID=e76c972310a593c98aa25b8b74385594fd7525a9 | ||
|CorpusID=0 | |||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |PublicationNrofModels=a single module | ||
Revision as of 06:38, 10 October 2024
| Author(s) | Paez-Trujilo, Ana; Cañon, Jeffer; Hernandez, Beatriz; Corzo, Gerald; Solomatine, Dimitri; |
| BibType | journalArticle |
| Title | Multivariate regression trees as an “explainable machine learning” approach to explore relationships between hydroclimatic characteristics and agricultural and hydrological drought severity: case of study Cesar River basin |
| Editors | |
| Year | 2023-12-18 |
| Journal | Natural Hazards and Earth System Sciences |
| Booktitle | None |
| Volume | 23 |
| Pages | 3863–3883 |
| URL | https://nhess.copernicus.org/articles/23/3863/2023/ |
| DOI | 10.5194/nhess-23-3863-2023 |
| ISBN | |
| Note | Auto downloaded ref at: 2024-09-07
|
| |
|
| Feature reference | No |
| PublicationClusterID | 0 |
| MS_PublicationClusterID | 0 |
| Semantic_ID | e76c972310a593c98aa25b8b74385594fd7525a9 |
| Nr of citations | 0 |
| Sort of publication | a module application description |
| Sort of model publication | a single module |
| Is the CSDMS HPC used | No |
| If HPC is used, for what project was it?: | |
| Associated simulation movie if any: |
|
| Model(s) discussed: | SWAT
|
