Reference:Reference-024111: Difference between revisions
From CSDMS
Bot: Automated import of articles *** existing text overwritten *** |
No edit summary |
||
| Line 17: | Line 17: | ||
|MS_PublicationClusterID=0 | |MS_PublicationClusterID=0 | ||
|Semantic_ID=e285c4c7001d58590ec98440f36ef2ae781e74b7 | |Semantic_ID=e285c4c7001d58590ec98440f36ef2ae781e74b7 | ||
|CorpusID=0 | |||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |PublicationNrofModels=a single module | ||
Revision as of 18:51, 9 October 2024
| Author(s) | Makhlouf, Ahmed; El-Rawy, Mustafa; Kanae, Shinjiro; Ibrahim, Mona G.; Sharaan, Mahmoud; | |
| BibType | journalArticle | |
| Title | Integrating MODFLOW and machine learning for detecting optimum groundwater abstraction considering sustainable drawdown and climate changes | |
| Editors | ||
| Year | 2024-06 | |
| Journal | Journal of Hydrology | |
| Booktitle | None | |
| Volume | 637 | |
| Pages | 131428 | |
| URL | https://linkinghub.elsevier.com/retrieve/pii/S0022169424008230 | |
| DOI | 10.1016/j.jhydrol.2024.131428 | |
| ISBN | ||
| Note | Auto downloaded ref at: 2024-09-04
| |
| |
||
| Highlighted paper on group site | ||
| Highlight text | ||
| Highlight image | ||
| Which groups | ||
| Feature reference | No | |
| PublicationClusterID | 0 | |
| MS_PublicationClusterID | 0 | |
| Semantic_ID | e285c4c7001d58590ec98440f36ef2ae781e74b7 | |
| Nr of citations | 0 | |
| Sort of publication | a module application description | |
| Sort of model publication | a single module | |
| Is the CSDMS HPC used | No | |
| If HPC is used, for what project was it?: | ||
| Associated simulation movie if any: |
| |
| Model(s) discussed: | MODFLOW
|
