Reference:Reference-015555: Difference between revisions
From CSDMS
m Text replacement - " |Semantic_ID" to " |Semantic_ID" |
No edit summary |
||
| Line 17: | Line 17: | ||
|MS_PublicationClusterID=3006591431 | |MS_PublicationClusterID=3006591431 | ||
|Semantic_ID=fa2e2cda974eb20eb37d9defefb2ba41015f4e7d | |Semantic_ID=fa2e2cda974eb20eb37d9defefb2ba41015f4e7d | ||
|CorpusID=0 | |||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |PublicationNrofModels=a single module | ||
Latest revision as of 16:53, 9 October 2024
| Author(s) | Wagena, Moges B.; Goering, Dustin; Collick, Amy S.; Bock, Emily; Fuka, Daniel R.; Buda, Anthony; Easton, Zachary M.; |
| BibType | journalArticle |
| Title | Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models |
| Editors | |
| Year | 2020-04 |
| Journal | Environmental Modelling & Software |
| Booktitle | |
| Volume | 126 |
| Pages | 104669 |
| URL | https://linkinghub.elsevier.com/retrieve/pii/S1364815219308047 |
| DOI | 10.1016/j.envsoft.2020.104669 |
| ISBN | |
| Note | Auto downloaded ref at: 2022-01-02
|
| |
|
| Feature reference | No |
| PublicationClusterID | 0 |
| MS_PublicationClusterID | 3006591431 |
| Semantic_ID | fa2e2cda974eb20eb37d9defefb2ba41015f4e7d |
| Nr of citations | 70 |
| Sort of publication | a module application description |
| Sort of model publication | a single module |
| Is the CSDMS HPC used | No |
| If HPC is used, for what project was it?: | |
| Associated simulation movie if any: |
|
| Model(s) discussed: | SWAT
|
