Reference:Reference-021317: Difference between revisions
From CSDMS
m Text replacement - "|Semantic_ID=3d8c3253603b3d82f4af74b211f843e649394d7e" to "|Semantic_ID=3d8c3253603b3d82f4af74b211f843e649394d7e |CorpusID=248066074" |
m Text replacement - " |CorpusID=" to " |CorpusID=" |
||
| Line 16: | Line 16: | ||
|PublicationClusterID=0 | |PublicationClusterID=0 | ||
|MS_PublicationClusterID=0 | |MS_PublicationClusterID=0 | ||
|Semantic_ID=3d8c3253603b3d82f4af74b211f843e649394d7e |CorpusID=248066074 | |Semantic_ID=3d8c3253603b3d82f4af74b211f843e649394d7e | ||
|CorpusID=248066074 | |||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |PublicationNrofModels=a single module | ||
Revision as of 09:09, 1 October 2024
| Author(s) | Volpi, Elena; Kim, Jong Suk; Jain, Shaleen; Shrestha, Sangam; de Moura, Carolina Natel; Seibert, Jan; Marco Detzel, Daniel Henrique; | |
| BibType | bookSection | |
| Title | Evaluating the long short-term memory (LSTM) network for discharge prediction under changing climate conditions | |
| Editors | ||
| Year | 2024-06-15 | |
| Journal | None | |
| Booktitle | Artificial Intelligence in Hydrology | |
| Volume | None | |
| Pages | None | |
| URL | https://iwaponline.com/ebooks/book/925/chapter/3763414/Evaluating-the-long-short-term-memory-LSTM-network | |
| DOI | None | |
| ISBN | ||
| Note | Auto downloaded ref at: 2024-08-29
| |
| |
||
| Highlighted paper on group site | ||
| Highlight text | ||
| Highlight image | ||
| Which groups | ||
| Feature reference | No | |
| PublicationClusterID | 0 | |
| MS_PublicationClusterID | 0 | |
| Semantic_ID | 3d8c3253603b3d82f4af74b211f843e649394d7e | |
| Nr of citations | 6 | |
| Sort of publication | a module application description | |
| Sort of model publication | a single module | |
| Is the CSDMS HPC used | No | |
| If HPC is used, for what project was it?: | ||
| Associated simulation movie if any: |
| |
| Model(s) discussed: | HBV
|
