Reference:Reference-022186: Difference between revisions
From CSDMS
m Text replacement - "|Semantic_ID=6af282ba1998711124e6bf010febc471c31f85d4" to "|Semantic_ID=6af282ba1998711124e6bf010febc471c31f85d4 |CorpusID=262208335" |
m Text replacement - " |CorpusID=" to " |CorpusID=" |
||
Line 16: | Line 16: | ||
|PublicationClusterID=0 | |PublicationClusterID=0 | ||
|MS_PublicationClusterID=0 | |MS_PublicationClusterID=0 | ||
|Semantic_ID=6af282ba1998711124e6bf010febc471c31f85d4 |CorpusID=262208335 | |Semantic_ID=6af282ba1998711124e6bf010febc471c31f85d4 | ||
|CorpusID=262208335 | |||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |PublicationNrofModels=a single module |
Revision as of 10:08, 1 October 2024
Author(s) | Dolatabadi, Neda; Zahraie, Banafsheh; |
BibType | journalArticle |
Title | A stochastic deep-learning-based approach for improved streamflow simulation |
Editors | |
Year | 2024-01 |
Journal | Stochastic Environmental Research and Risk Assessment |
Booktitle | None |
Volume | 38 |
Pages | 107–126 |
URL | https://link.springer.com/10.1007/s00477-023-02567-1 |
DOI | 10.1007/s00477-023-02567-1 |
ISBN | |
Note | Auto downloaded ref at: 2024-08-29
|
|
|
Feature reference | No |
PublicationClusterID | 0 |
MS_PublicationClusterID | 0 |
Semantic_ID | 6af282ba1998711124e6bf010febc471c31f85d4 |
Nr of citations | 2 |
Sort of publication | a module application description |
Sort of model publication | a single module |
Is the CSDMS HPC used | No |
If HPC is used, for what project was it?: | |
Associated simulation movie if any: |
|
Model(s) discussed: | VIC
|