Reference:Reference-015002: Difference between revisions
From CSDMS
m Text replacement - " |Semantic_ID" to " |Semantic_ID" |
m Text replacement - "|Semantic_ID=1587bc1dab129e937aeba9d36d370a100dacbc7f" to "|Semantic_ID=1587bc1dab129e937aeba9d36d370a100dacbc7f |CorpusID=228946897" |
||
Line 16: | Line 16: | ||
|PublicationClusterID=0 | |PublicationClusterID=0 | ||
|MS_PublicationClusterID=3097092373 | |MS_PublicationClusterID=3097092373 | ||
|Semantic_ID=1587bc1dab129e937aeba9d36d370a100dacbc7f | |Semantic_ID=1587bc1dab129e937aeba9d36d370a100dacbc7f |CorpusID=228946897 | ||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |PublicationNrofModels=a single module |
Revision as of 16:46, 30 September 2024
Author(s) | Ogliari, Emanuele; Nespoli, Alfredo; Mussetta, Marco; Pretto, Silvia; Zimbardo, Andrea; Bonfanti, Nicholas; Aufiero, Manuele; |
BibType | journalArticle |
Title | A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network |
Editors | |
Year | 2020-10-15 |
Journal | Forecasting |
Booktitle | |
Volume | 2 |
Pages | 410–428 |
URL | https://www.mdpi.com/2571-9394/2/4/22 |
DOI | 10.3390/forecast2040022 |
ISBN | |
Note | Auto downloaded ref at: 2021-07-03
|
|
|
Feature reference | No |
PublicationClusterID | 0 |
MS_PublicationClusterID | 3097092373 |
Semantic_ID | 1587bc1dab129e937aeba9d36d370a100dacbc7f |
Nr of citations | 5 |
Sort of publication | a module application description |
Sort of model publication | a single module |
Is the CSDMS HPC used | No |
If HPC is used, for what project was it?: | |
Associated simulation movie if any: |
|
Model(s) discussed: | HYPE |