Reference:Reference-023160: Difference between revisions
From CSDMS
Bot: Automated import of articles *** existing text overwritten *** |
m Text replacement - "|Semantic_ID=0d82a6e2ee4d52ad5d240a8259fa51f1fbfefe3c" to "|Semantic_ID=0d82a6e2ee4d52ad5d240a8259fa51f1fbfefe3c |CorpusID=240506884" |
||
| Line 16: | Line 16: | ||
|PublicationClusterID=0 | |PublicationClusterID=0 | ||
|MS_PublicationClusterID=0 | |MS_PublicationClusterID=0 | ||
|Semantic_ID=0d82a6e2ee4d52ad5d240a8259fa51f1fbfefe3c | |Semantic_ID=0d82a6e2ee4d52ad5d240a8259fa51f1fbfefe3c |CorpusID=240506884 | ||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |PublicationNrofModels=a single module | ||
Revision as of 15:41, 30 September 2024
| Author(s) | Christoforou, E.; Emiris, I. Z.; Florakis, A.; Rizou, D.; Zaharia, S.; | |
| BibType | journalArticle | |
| Title | Spatio-temporal deep learning for day-ahead wind speed forecasting relying on WRF predictions | |
| Editors | ||
| Year | 2023-05 | |
| Journal | Energy Systems | |
| Booktitle | None | |
| Volume | 14 | |
| Pages | 473–493 | |
| URL | https://link.springer.com/10.1007/s12667-021-00480-6 | |
| DOI | 10.1007/s12667-021-00480-6 | |
| ISBN | ||
| Note | Auto downloaded ref at: 2024-08-30
| |
| |
||
| Highlighted paper on group site | ||
| Highlight text | ||
| Highlight image | ||
| Which groups | ||
| Feature reference | No | |
| PublicationClusterID | 0 | |
| MS_PublicationClusterID | 0 | |
| Semantic_ID | 0d82a6e2ee4d52ad5d240a8259fa51f1fbfefe3c | |
| Nr of citations | 5 | |
| Sort of publication | a module application description | |
| Sort of model publication | a single module | |
| Is the CSDMS HPC used | No | |
| If HPC is used, for what project was it?: | ||
| Associated simulation movie if any: |
| |
| Model(s) discussed: | WRF
|
