Reference:Reference-025516: Difference between revisions
From CSDMS
Created page with "{{CSDMS reference template cargo |DOIentry=10.1175/aies-d-22-0049.1 }} {{RefsInt1 |FeatureRef=No |PublicationClusterID=0 |MS_PublicationClusterID=0 |Semantic_ID=426dc20663fdf84fbf071c4bf4d83b15dd8a3182 |PublicationWhatKindOf=a module application description |PublicationHPCCYesno=No |PublicationNrofModels=a single module }} {{RefsInt2 |PublicationMultipleModelsCargo=WRF }} {{RefsInt3}}" |
Bot: Automated import of articles *** existing text overwritten *** |
||
Line 1: | Line 1: | ||
{{ | {{BibEntryCargo | ||
| | |Firstname=Feng Chang, Christina; Astitha, Marina; Yuan, Yongping; Tang, Chunling; Vlahos, Penny; Garcia, Valerie; Khaira, Ummul; | ||
|BibType=journalArticle | |||
|Title=A New Approach to Predict Tributary Phosphorus Loads Using Machine Learning– and Physics-Based Modeling Systems | |||
|Year=2023-07 | |||
|Journal=Artificial Intelligence for the Earth Systems | |||
|Booktitle=None | |||
|Volume=2 | |||
|Pages=None | |||
|URL=https://journals.ametsoc.org/view/journals/aies/2/3/AIES-D-22-0049.1.xml | |||
|DOI=10.1175/AIES-D-22-0049.1 | |||
|Note=Auto downloaded ref at: 2024-09-04 | |||
}} | }} | ||
{{RefsInt1 | {{RefsInt1 | ||
Line 8: | Line 18: | ||
|Semantic_ID=426dc20663fdf84fbf071c4bf4d83b15dd8a3182 | |Semantic_ID=426dc20663fdf84fbf071c4bf4d83b15dd8a3182 | ||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |||
|PublicationHPCCYesno=No | |PublicationHPCCYesno=No | ||
}} | }} | ||
{{RefsInt2 | {{RefsInt2 | ||
|PublicationMultipleModelsCargo=WRF | |PublicationMultipleModelsCargo=WRF | ||
}} | }} | ||
{{RefsInt3}} | {{RefsInt3 | ||
|PublicationAnimationsCargo=None | |||
}} |
Revision as of 15:21, 5 September 2024
Author(s) | Feng Chang, Christina; Astitha, Marina; Yuan, Yongping; Tang, Chunling; Vlahos, Penny; Garcia, Valerie; Khaira, Ummul; |
BibType | journalArticle |
Title | A New Approach to Predict Tributary Phosphorus Loads Using Machine Learning– and Physics-Based Modeling Systems |
Editors | |
Year | 2023-07 |
Journal | Artificial Intelligence for the Earth Systems |
Booktitle | None |
Volume | 2 |
Pages | None |
URL | https://journals.ametsoc.org/view/journals/aies/2/3/AIES-D-22-0049.1.xml |
DOI | 10.1175/AIES-D-22-0049.1 |
ISBN | |
Note | Auto downloaded ref at: 2024-09-04
|
|
|
Feature reference | No |
PublicationClusterID | 0 |
MS_PublicationClusterID | 0 |
Semantic_ID | 426dc20663fdf84fbf071c4bf4d83b15dd8a3182 |
Nr of citations | 2 |
Sort of publication | a module application description |
Sort of model publication | a single module |
Is the CSDMS HPC used | No |
If HPC is used, for what project was it?: | |
Associated simulation movie if any: |
|
Model(s) discussed: | WRF
|