Reference:Reference-022943: Difference between revisions
From CSDMS
m Text replacement - "|Semantic_ID=031d5dee0c77de1495717437312ac337afb4600a" to "|Semantic_ID=031d5dee0c77de1495717437312ac337afb4600a |CorpusID=253222022" |
m Text replacement - " |CorpusID=" to " |CorpusID=" |
||
Line 16: | Line 16: | ||
|PublicationClusterID=0 | |PublicationClusterID=0 | ||
|MS_PublicationClusterID=0 | |MS_PublicationClusterID=0 | ||
|Semantic_ID=031d5dee0c77de1495717437312ac337afb4600a |CorpusID=253222022 | |Semantic_ID=031d5dee0c77de1495717437312ac337afb4600a | ||
|CorpusID=253222022 | |||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |PublicationNrofModels=a single module |
Revision as of 10:14, 1 October 2024
Author(s) | Feng, Jin; Li, Yanjie; Qiu, Yulu; Zhu, Fuxin; |
BibType | journalArticle |
Title | Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data |
Editors | |
Year | 2023-01-10 |
Journal | Atmospheric Chemistry and Physics |
Booktitle | None |
Volume | 23 |
Pages | 375–388 |
URL | https://acp.copernicus.org/articles/23/375/2023/ |
DOI | 10.5194/acp-23-375-2023 |
ISBN | |
Note | Auto downloaded ref at: 2024-08-30
|
|
|
Feature reference | No |
PublicationClusterID | 0 |
MS_PublicationClusterID | 0 |
Semantic_ID | 031d5dee0c77de1495717437312ac337afb4600a |
Nr of citations | 2 |
Sort of publication | a module application description |
Sort of model publication | a single module |
Is the CSDMS HPC used | No |
If HPC is used, for what project was it?: | |
Associated simulation movie if any: |
|
Model(s) discussed: | WRF
|