Reference:Reference-023957: Difference between revisions
From CSDMS
Created page with "{{CSDMS reference template cargo |DOIentry=10.1007/s00190-023-01768-4 }} {{RefsInt1 |FeatureRef=No |PublicationClusterID=0 |MS_PublicationClusterID=0 |Semantic_ID=859a63edb2c10e796d5ceef74e59391b3ff060ac |PublicationWhatKindOf=a module application description |PublicationHPCCYesno=No |PublicationNrofModels=a single module }} {{RefsInt2 |PublicationMultipleModelsCargo=WAVEWATCH III ^TM }} {{RefsInt3}}" |
Bot: Automated import of articles *** existing text overwritten *** |
||
Line 1: | Line 1: | ||
{{ | {{BibEntryCargo | ||
| | |Firstname=Bu, Jinwei; Yu, Kegen; Ni, Jun; Huang, Weimin; | ||
|BibType=journalArticle | |||
|Title=Combining ERA5 data and CYGNSS observations for the joint retrieval of global significant wave height of ocean swell and wind wave: a deep convolutional neural network approach | |||
|Year=2023-08 | |||
|Journal=Journal of Geodesy | |||
|Booktitle=None | |||
|Volume=97 | |||
|Pages=None | |||
|URL=https://link.springer.com/10.1007/s00190-023-01768-4 | |||
|DOI=10.1007/s00190-023-01768-4 | |||
|Note=Auto downloaded ref at: 2024-08-30 | |||
}} | }} | ||
{{RefsInt1 | {{RefsInt1 | ||
Line 8: | Line 18: | ||
|Semantic_ID=859a63edb2c10e796d5ceef74e59391b3ff060ac | |Semantic_ID=859a63edb2c10e796d5ceef74e59391b3ff060ac | ||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |||
|PublicationHPCCYesno=No | |PublicationHPCCYesno=No | ||
}} | }} | ||
{{RefsInt2 | {{RefsInt2 | ||
|PublicationMultipleModelsCargo=WAVEWATCH III ^TM | |PublicationMultipleModelsCargo=WAVEWATCH III ^TM | ||
}} | }} | ||
{{RefsInt3}} | {{RefsInt3 | ||
|PublicationAnimationsCargo=None | |||
}} |
Revision as of 06:57, 31 August 2024
Author(s) | Bu, Jinwei; Yu, Kegen; Ni, Jun; Huang, Weimin; |
BibType | journalArticle |
Title | Combining ERA5 data and CYGNSS observations for the joint retrieval of global significant wave height of ocean swell and wind wave: a deep convolutional neural network approach |
Editors | |
Year | 2023-08 |
Journal | Journal of Geodesy |
Booktitle | None |
Volume | 97 |
Pages | None |
URL | https://link.springer.com/10.1007/s00190-023-01768-4 |
DOI | 10.1007/s00190-023-01768-4 |
ISBN | |
Note | Auto downloaded ref at: 2024-08-30
|
|
|
Feature reference | No |
PublicationClusterID | 0 |
MS_PublicationClusterID | 0 |
Semantic_ID | 859a63edb2c10e796d5ceef74e59391b3ff060ac |
Nr of citations | 7 |
Sort of publication | a module application description |
Sort of model publication | a single module |
Is the CSDMS HPC used | No |
If HPC is used, for what project was it?: | |
Associated simulation movie if any: |
|
Model(s) discussed: | WAVEWATCH III ^TM
|