Reference:Reference-032695: Difference between revisions
From CSDMS
Created page with "{{CSDMS reference template cargo |DOIentry=10.25303/1711da035048 }} {{RefsInt1 |FeatureRef=No |PublicationClusterID=0 |MS_PublicationClusterID=0 |Semantic_ID=caf37c47e5bbbf768d851d7cf103e0cb56e187db |PublicationWhatKindOf=a module application description |PublicationHPCCYesno=No |PublicationNrofModels=a single module }} {{RefsInt2 |PublicationMultipleModelsCargo=SWAT }} {{RefsInt3}}" |
m Text replacement - "None" to "" |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
{{ | {{BibEntryCargo | ||
| | |Firstname=Rajput, Preeti; Sinha, Manish Kumar; Taram, Ramchandra; | ||
|BibType=journalArticle | |||
|Title=Assessing Future hydrological response of an urban watershed using machine learning based LULC forecasting models | |||
|Year=2024-09-30 | |||
|Journal=Disaster Advances | |||
|Booktitle= | |||
|Volume=17 | |||
|Pages=35–48 | |||
|URL=https://worldresearchersassociations.com/Archives/DA/Vol(17)2024/November%202024/Assessing%20Future%20hydrological%20response%20of%20an%20urban%20watershed.aspx | |||
|DOI=10.25303/1711da035048 | |||
|Note=Auto downloaded ref at: 2024-10-24 | |||
}} | }} | ||
{{RefsInt1 | {{RefsInt1 | ||
Line 8: | Line 18: | ||
|Semantic_ID=caf37c47e5bbbf768d851d7cf103e0cb56e187db | |Semantic_ID=caf37c47e5bbbf768d851d7cf103e0cb56e187db | ||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |||
|PublicationHPCCYesno=No | |PublicationHPCCYesno=No | ||
}} | }} | ||
{{RefsInt2 | {{RefsInt2 | ||
|PublicationMultipleModelsCargo=SWAT | |PublicationMultipleModelsCargo=SWAT | ||
}} | }} | ||
{{RefsInt3}} | {{RefsInt3 | ||
|PublicationAnimationsCargo= | |||
}} |
Latest revision as of 15:25, 12 November 2024
Author(s) | Rajput, Preeti; Sinha, Manish Kumar; Taram, Ramchandra; |
BibType | journalArticle |
Title | Assessing Future hydrological response of an urban watershed using machine learning based LULC forecasting models |
Editors | |
Year | 2024-09-30 |
Journal | Disaster Advances |
Booktitle | |
Volume | 17 |
Pages | 35–48 |
URL | https://worldresearchersassociations.com/Archives/DA/Vol(17)2024/November%202024/Assessing%20Future%20hydrological%20response%20of%20an%20urban%20watershed.aspx |
DOI | 10.25303/1711da035048 |
ISBN | |
Note | Auto downloaded ref at: 2024-10-24
|
|
|
Feature reference | No |
PublicationClusterID | 0 |
MS_PublicationClusterID | 0 |
Semantic_ID | caf37c47e5bbbf768d851d7cf103e0cb56e187db |
Nr of citations | 0 |
Sort of publication | a module application description |
Sort of model publication | a single module |
Is the CSDMS HPC used | No |
If HPC is used, for what project was it?: | |
Associated simulation movie if any: |
|
Model(s) discussed: | SWAT
|