Reference:Reference-028819: Difference between revisions
From CSDMS
Created page with "{{CSDMS reference template cargo |DOIentry=10.1080/02626667.2023.2241850 }} {{RefsInt1 |FeatureRef=No |PublicationClusterID=0 |MS_PublicationClusterID=0 |Semantic_ID=95c0e29ae707f7d64a4f87c11e3460a7ec058fff |PublicationWhatKindOf=a module application description |PublicationHPCCYesno=No |PublicationNrofModels=a single module }} {{RefsInt2 |PublicationMultipleModelsCargo=SWAT }} {{RefsInt3}}" |
m Text replacement - "None" to "" |
||
| (7 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
{{ | {{BibEntryCargo | ||
| | |Firstname=Gelete, Gebre; Nourani, Vahid; Gokcekus, Huseyin; Gichamo, Tagesse; | ||
|BibType=journalArticle | |||
|Title=Physical and artificial intelligence-based hybrid models for rainfall–runoff–sediment process modelling | |||
|Year=2023-10-03 | |||
|Journal=Hydrological Sciences Journal | |||
|Booktitle= | |||
|Volume=68 | |||
|Pages=1841–1863 | |||
|URL=https://www.tandfonline.com/doi/full/10.1080/02626667.2023.2241850 | |||
|DOI=10.1080/02626667.2023.2241850 | |||
|Note=Auto downloaded ref at: 2024-09-07 | |||
}} | }} | ||
{{RefsInt1 | {{RefsInt1 | ||
| Line 6: | Line 16: | ||
|PublicationClusterID=0 | |PublicationClusterID=0 | ||
|MS_PublicationClusterID=0 | |MS_PublicationClusterID=0 | ||
|Semantic_ID=95c0e29ae707f7d64a4f87c11e3460a7ec058fff | |Semantic_ID=95c0e29ae707f7d64a4f87c11e3460a7ec058fff |CorpusID=260258174 |CorpusID=260258174 | ||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |||
|PublicationHPCCYesno=No | |PublicationHPCCYesno=No | ||
}} | }} | ||
{{RefsInt2 | {{RefsInt2 | ||
|PublicationMultipleModelsCargo=SWAT | |PublicationMultipleModelsCargo=SWAT | ||
}} | }} | ||
{{RefsInt3}} | {{RefsInt3 | ||
|PublicationAnimationsCargo= | |||
}} | |||
Latest revision as of 14:08, 12 November 2024
| Author(s) | Gelete, Gebre; Nourani, Vahid; Gokcekus, Huseyin; Gichamo, Tagesse; | |
| BibType | journalArticle | |
| Title | Physical and artificial intelligence-based hybrid models for rainfall–runoff–sediment process modelling | |
| Editors | ||
| Year | 2023-10-03 | |
| Journal | Hydrological Sciences Journal | |
| Booktitle | ||
| Volume | 68 | |
| Pages | 1841–1863 | |
| URL | https://www.tandfonline.com/doi/full/10.1080/02626667.2023.2241850 | |
| DOI | 10.1080/02626667.2023.2241850 | |
| ISBN | ||
| Note | Auto downloaded ref at: 2024-09-07
| |
| |
||
| Highlighted paper on group site | ||
| Highlight text | ||
| Highlight image | ||
| Which groups | ||
| Feature reference | No | |
| PublicationClusterID | 0 | |
| MS_PublicationClusterID | 0 | |
| Semantic_ID | 95c0e29ae707f7d64a4f87c11e3460a7ec058fff | |
| Nr of citations | 1 | |
| Sort of publication | a module application description | |
| Sort of model publication | a single module | |
| Is the CSDMS HPC used | No | |
| If HPC is used, for what project was it?: | ||
| Associated simulation movie if any: |
| |
| Model(s) discussed: | SWAT
|
