Reference:Reference-024111: Difference between revisions
From CSDMS
Created page with "{{CSDMS reference template cargo |DOIentry=10.1016/j.jhydrol.2024.131428 }} {{RefsInt1 |FeatureRef=No |PublicationClusterID=0 |MS_PublicationClusterID=0 |Semantic_ID=e285c4c7001d58590ec98440f36ef2ae781e74b7 |PublicationWhatKindOf=a module application description |PublicationHPCCYesno=No |PublicationNrofModels=a single module }} {{RefsInt2 |PublicationMultipleModelsCargo=MODFLOW }} {{RefsInt3}}" |
m Text replacement - "None" to "" |
||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
{{ | {{BibEntryCargo | ||
| | |Firstname=Makhlouf, Ahmed; El-Rawy, Mustafa; Kanae, Shinjiro; Ibrahim, Mona G.; Sharaan, Mahmoud; | ||
|BibType=journalArticle | |||
|Title=Integrating MODFLOW and machine learning for detecting optimum groundwater abstraction considering sustainable drawdown and climate changes | |||
|Year=2024-06 | |||
|Journal=Journal of Hydrology | |||
|Booktitle= | |||
|Volume=637 | |||
|Pages=131428 | |||
|URL=https://linkinghub.elsevier.com/retrieve/pii/S0022169424008230 | |||
|DOI=10.1016/j.jhydrol.2024.131428 | |||
|Note=Auto downloaded ref at: 2024-09-04 | |||
}} | }} | ||
{{RefsInt1 | {{RefsInt1 | ||
| Line 7: | Line 17: | ||
|MS_PublicationClusterID=0 | |MS_PublicationClusterID=0 | ||
|Semantic_ID=e285c4c7001d58590ec98440f36ef2ae781e74b7 | |Semantic_ID=e285c4c7001d58590ec98440f36ef2ae781e74b7 | ||
|CorpusID=0 | |||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |||
|PublicationHPCCYesno=No | |PublicationHPCCYesno=No | ||
}} | }} | ||
{{RefsInt2 | {{RefsInt2 | ||
|PublicationMultipleModelsCargo=MODFLOW | |PublicationMultipleModelsCargo=MODFLOW | ||
}} | }} | ||
{{RefsInt3}} | {{RefsInt3 | ||
|PublicationAnimationsCargo= | |||
}} | |||
Latest revision as of 11:49, 12 November 2024
| Author(s) | Makhlouf, Ahmed; El-Rawy, Mustafa; Kanae, Shinjiro; Ibrahim, Mona G.; Sharaan, Mahmoud; |
| BibType | journalArticle |
| Title | Integrating MODFLOW and machine learning for detecting optimum groundwater abstraction considering sustainable drawdown and climate changes |
| Editors | |
| Year | 2024-06 |
| Journal | Journal of Hydrology |
| Booktitle | |
| Volume | 637 |
| Pages | 131428 |
| URL | https://linkinghub.elsevier.com/retrieve/pii/S0022169424008230 |
| DOI | 10.1016/j.jhydrol.2024.131428 |
| ISBN | |
| Note | Auto downloaded ref at: 2024-09-04
|
| |
|
| Feature reference | No |
| PublicationClusterID | 0 |
| MS_PublicationClusterID | 0 |
| Semantic_ID | e285c4c7001d58590ec98440f36ef2ae781e74b7 |
| Nr of citations | 0 |
| Sort of publication | a module application description |
| Sort of model publication | a single module |
| Is the CSDMS HPC used | No |
| If HPC is used, for what project was it?: | |
| Associated simulation movie if any: |
|
| Model(s) discussed: | MODFLOW
|
