Model help:SteadyStateAg: Difference between revisions

From CSDMS
No edit summary
m Text replacement - "http://csdms.colorado.edu/wiki/" to "https://csdms.colorado.edu/wiki/"
 
(6 intermediate revisions by 2 users not shown)
Line 3: Line 3:
1) Log in to the wiki
1) Log in to the wiki
2) Create a new page for each model, by using the following URL:
2) Create a new page for each model, by using the following URL:
   * http://csdms.colorado.edu/wiki/Model help:<modelname>
   * https://csdms.colorado.edu/wiki/Model help:<modelname>
   * Replace <modelname> with the name of a model
   * Replace <modelname> with the name of a model
3) Than follow the link "edit this page"
3) Than follow the link "edit this page"
Line 138: Line 138:


==Main equations==
==Main equations==
* Exner equation
::::{|
::::{|
|width=500px|<math>S_{u}= {\frac{R C_{f} ^ \left ( {\frac{1}{2}}\right )} {\alpha _{EH} \tau _{form} ^*}} {\frac{Q_{tbf,feed}}{Q_{bf}}} </math>
|width=500px|<math> \left ( 1 - \lambda_{p} \right ) {\frac{\partial \eta}{\partial t}} = - \Omega {\frac{I_{f} \left ( 1 + \Lambda \right )}{B_{f}}} {\frac{\partial Q_{tbf}}{\partial x}} </math>
|width=50px align="right"|(1)
|width=50px align="right"|(1)
|}
|}
* Relation for sediment transport
1) Dimensionless bankfull width
::::{|
::::{|
|width=500px|<math>{\frac{S}{S_{u}}} = \left ( 1 - \beta \hat{x}\right ) </math>
|width=500px|<math> \hat{B} = {\frac{C_{f}}{\alpha_{EH} \left ( \tau_{form}^* \right ) ^ \left (2.5 \right )}} \hat{Q}_{t} </math>
|width=50px align="right"|(2)
|width=50px align="right"|(2)
|}
|}
2) Down-channel bed slope
::::{|
::::{|
|width=500px|<math>\hat{\eta} = {\frac{\eta_{dev}}{L}} </math>
|width=500px|<math> S = {\frac{R^ \left ({\frac{3}{2}}\right ) C_{f}^ \left ({\frac{1}{2}}\right )}{\alpha_{EH} \tau_{form}^*}} {\frac{\hat{Q}_{t}}{\hat{Q}}} </math>
|width=50px align="right"|(3)
|width=50px align="right"|(3)
|}
|}
3) Dimensionless bankfull depth
::::{|
::::{|
|width=500px|<math>\hat{x} = {\frac{x}{L}} </math>
|width=500px|<math> \hat{H} = {\frac{\alpha_{EH} \left ( \tau_{form} \right )^2}{\left ( R C_{f} \right ) ^\left ({\frac{1}{2}}\right )}}{\frac{\hat{Q}}{\hat{Q}_{t}}} </math>
|width=50px align="right"|(4)
|width=50px align="right"|(4)
|}
|}
4) Total volume bed material load at bankfull flow
::::{|
::::{|
|width=500px|<math>\beta = {\frac{ \left (1 - \lambda _{p} \right ) B_{f} \dot{\xi} _{d} L}{I_{f} \Omega \left ( 1 + \Lambda \right ) Q_{tbf,feed}}} </math>
|width=500px|<math> Q_{tbf} = {\frac{\alpha_{EH} \tau_{form}^*}{R C_{f} ^ \left ({\frac{1}{2}}\right )}} Q_{bf} S </math>
|width=50px align="right"|(5)
|width=50px align="right"|(5)
|}
|}
5) Reduction of the Exner equation
::::{|
::::{|
|width=500px|<math>\hat{\eta} = S_{u} [ \left ( 1 - {\frac{1}{2}} \beta \right ) - \hat{x} + {\frac{1}{2}} \beta  \hat{x} ^2 ] </math>
|width=500px|<math> {\frac{\partial \eta}{\partial t}} = \kappa_{d}{\frac{\partial ^2 \eta}{\partial x^2}} </math>
|width=50px align="right"|(6)
|width=50px align="right"|(6)
|}
|}
6) Kinematic sediment diffusivity
::::{|
::::{|
|width=500px|<math>\eta = \xi _{do} + \dot{\xi} _{d} t + \eta _{dev} \left ( x \right ) </math>
|width=500px|<math> \kappa_{d} = {\frac{I_{f} \Omega \left ( 1 + \Lambda \right )}{\left ( 1 - \lambda_{p}\right ) B_{f}}} {\frac{\alpha _{EH} \tau_{form}^* Q_{bf}}{R C_{f}^\left ({\frac{1}{2}}\right )}} </math>
|width=50px align="right"|(7)
|width=50px align="right"|(7)
|}
|}
* Bed elevation
::::{|
::::{|
|width=500px|<math>{\frac{B_{bf}}{D}} = {\frac{C_{f}}{\alpha _{EH} \left ( \tau _{form} ^* \right ) ^ \left ( 2.5 \right ) }} {\frac{Q_{tbf}}{\sqrt { R g D } D^2}} </math>
|width=500px|<math> \eta = \xi_{do} + \xi_{d} t + \eta_{dev} \left (x, t \right ) </math>
|width=50px align="right"|(8)
|width=50px align="right"|(8)
|}
|}
* Steady-State aggradation in response to sea level rise condition
::::{|
::::{|
|width=500px|<math>{\frac{H}{D}} = {\frac{\alpha _{EH} \left ( \tau _{form} ^* \right ) ^2}{C_{f} ^ \left ({\frac{1}{2}} \right )}} {\frac{Q_{bf}}{Q_{tbf}}} </math>
|width=500px|<math> {\frac{\partial \eta_{dev}}{\partial t}} = 0 </math>
|width=50px align="right"|(9)
|width=50px align="right"|(9)
|}
|}
::::{|
::::{|
|width=500px|<math>{\frac{Q_{tbf}}{Q_{tbf,feed}}} = 1 - \beta \hat{x} </math>
|width=500px|<math> \hat{x} = {\frac{x}{L}} </math>
|width=50px align="right"|(10)
|width=50px align="right"|(10)
|}
::::{|
|width=500px|<math> \hat{\eta} = {\frac{\eta_{dev}}{L}} </math>
|width=50px align="right"|(11)
|}
::::{|
|width=500px|<math> {\frac{Q_{tbf}}{Q_{tbf,feed}}} = {\frac{S}{S_{u}}} = 1 - \beta \hat{x} </math>
|width=50px align="right"|(12)
|}
::::{|
|width=500px|<math> \beta = {\frac{\left ( 1 - \lambda_{p}\right ) B_{f} \xi_{d} L}{I_{f} \Omega \left ( 1 + \Lambda \right ) Q_{tbf,feed}}} = {\frac{G_{fill}}{G_{feed}}} </math>
|width=50px align="right"|(13)
|}
1) Sediment delivery rate
::::{|
|width=500px|<math> Q_{tbf} = Q_{tbf,feed} - {\frac{\left (1 - \lambda_{p} \right ) B_{f}}{I_{f} \Omega \left ( 1 + \Omega \right )}} \xi_{d} X </math>
|width=50px align="right"|(14)
|}
2)Upstream slope at x = 0
::::{|
|width=500px|<math> S_{u} = {\frac{R C_{f}^\left ({\frac{1}{2}}\right )}{\alpha_{EH} \tau_{form}^*}} {\frac{Q_{tbf,feed}}{Q_{bf}}} </math>
|width=50px align="right"|(15)
|}
3) Elevation profile
::::{|
|width=500px|<math> \hat{\eta} = S_{u} [\left ( 1 - {\frac{1}{2}} \beta \right ) - \hat{x} + {\frac{1}{2}} \beta \hat{x}^2] </math>
|width=50px align="right"|(16)
|}
* Mean annual rate available for deposition
::::{|
|width=500px|<math> G_{feed} = \left ( 1 + \Lambda \right ) G_{t,feed} = \left ( 1 + \Lambda \right ) \left ( R + 1 \right ) Q_{tbf,feed} I_{f} </math>
|width=50px align="right"|(17)
|}
* Amount of sediment required to fill a reach at a uniform aggradation rate
::::{|
|width=500px|<math> G_{fill} = \left ( R + 1 \right ) \left ( 1 - \lambda_{p} \right ) B_{f} L_{v} \xi_{d} </math>
|width=50px align="right"|(18)
|}
|}


Line 185: Line 232:
!Symbol!!Description!!Unit
!Symbol!!Description!!Unit
|-
|-
| G<sub>t,feed</sub>
| Q<sub>bf</sub>
| mean annual bed material sediment feed rate
| flood of volume wash load per unit width
| Mt / year
| L<sup>3</sup> / T
|-
| Q<sub>tbf</sub>
| total volume bed material load at bankfull flow
| L<sup>3</sup> / T
|-
| Q<sub>tbf,feed</sub>
| upstream bed material sediment feed rate during flood
| L<sup>3</sup> / T
|-
| Λ
| units of wash load deposited in the fan per unit bed material load deposited
|
|-
| I<sub>f</sub>
| intermittency
| -
|-
| D
| grain size of bed material
| L
|-
| R
| submerged specific gravity of sediment (e.g. 1.65 for quartz)
| -
|-
|-
| L
| L
| reach length (downchannel distance)
| reach length (downchannel distance)
| km
| L
|-
|-
| L<sub>v</sub>
| B<sub>f</sub>
| reach length (downvalley distance)
| floodplain width
| km
| L
|-
|-
| dξ<sub>d</sub> / dt
| Ω
| rate of sea level rise
| channel sinuosity
| mm / year
| -
|-
|-
| Q<sub>bf</sub>
| λ<sub>p</sub>
| bankfull water discharge
| bed porosity
| m<sup>3</sup> / s
| -
|-
|-
| B<sub>f</sub>
| Cz
| floodplain width
| Chezy resistance coefficient
| km
| -
|-
|-
| D
| S<sub>fbl</sub>
| grain size
| initial fluvial bed slope
| mm
| -
|-
|-
| Λ
| dη<sub>d</sub> / dt
| fraction wash load deposited per unit material load deposited
| rate of rise of downstream base level (should be positive)
| kg/m<sup>3</sup>
| L / T
|-
|-
| Q<sub>tbf,feed</sub>
| M
| volume bed material sediment transport rate during flood time
| number of intervals
| -
| -
|-
|-
| C
| Δx
| volume concentration of bed material load
| spatial step
| L
|-
| Δt
| time step
| T
|- 
| Mtoprint
| number of time steps to printout
| -
| -
|-
|-
| BMSS
| Mprint
| flood concentration of bed material load
| number of printouts
| mg / L
| -
|-
| e
| rate of downstream base level rise
| L / T
|-
| p
| number of prints
| -
|-
| i
| number of iterations per print
| -
|-
| t
| time step
| T
|-
| y
| year the base level change begins
| T
|-
| Y
| year the base level change ends
| T
|-
| a
| coefficient in the Engelund-Hansen 1967 load relation
| -
|-
| n
| exponent in the Engelund-Hansen 1967 load relation
| -
|-
| T
| channel-forming Shields number for sand-bed streams
| -
|-
| P
| coefficient in the Parker 1979 load relation
| -
|-
| N
| exponent in the Parker 1979 load relation
| -
|-
| c
| critical Shield number
| -
|-
| G
| channel-forming Shields number for gravel-bed streams
| -
|-
| x
| downstream coordinate
| L
|-
|-
| S<sub>u</sub>
| H<sub>bf</sub>
| upstream slope
| bankfull water depth
| L
|-
| B<sub>bf</sub>
| bankfull channel width
| L
|-
| η
| bed surface elevation
| L
|-
| Sl
| bed surface slope
| -
|-
| q<sub>bT</sub>
| volume bedload transport per unit width
| L<sup>2</sup> / T
|-
| B^
| dimensionless bankfull width
| -
| -
|-
|-
| β
| Q^
| an coefficient to adjust L to make sure that this parameter < 1. If β> 1 then the sediment transport drops to 0 before reaching the delta
| dimensionless flow discharge
| -
| -
|-
|-
| τ<sub>form</sub> <sup>*</sup>
| Q^<sub>t</sub>
| channel-forming Shields number
| dimensionless total volume bed material load
| -
| -
|-
|-
| α<sub>EH</sub>
| H^
| coefficient in Engelund-Hansen bed material load relation
| dimensionless bankfull depth
| -
| -
|-
|-
| λ<sub>p</sub>
| C<sub>f</sub>
| bed porosity
| bed friction coefficient
| -
| -
|-
|-
| I<sub>f</sub>
| α<sub>EH</sub>
| flood intermittency
| parameter for the Engelund-Hansen relation, equals to 0.05
| -
| -
|-
|-
| Cz
| τ<sub>form</sub> <sup>*</sup>
| Chezy resistance coefficient
| Channel-forming Shields number
| -
| -
|-
|-
| Ω
| S
| channel sinuosity
| down-channel bed slope
| -
| -
|-
|-
| R
| κ<sub>d</sub>
| submerged specific gravity of sediment
| kinematic sediment diffusivity
| -
| -
|-
|-
| ξ<sub>do</sub>
| ξ<sub>do</sub>
| water surface elevation at t = 0
| sea level elevation at time t = 0
| -
| -
|-
|-
| Δt
| ξ<sub>d</sub>
| time interval for plotting
| aggradating rate of river bed
| year
| -
|-
|-
| xhat
| η<sub>dev</sub>
| dimensionless downstream coordinate
| downstream elevation deviation
| -
| -
|-
|-
| x
| x^
| downstream coordinate
| dimensionless down-channel coordinate  
| km
| -
|-
|-
| Q<sub>tbf</sub>
| β
| volume bed material transport during flood stage
| user-defined parameter
| m<sup>3</sup> / s
| -
|-
|-
| Sl
| S<sub>u</sub>
| bed slope
| upstream slope at x = 0
| -
| -
|-
|-
| ξ<sub>hat</sub>
| η^
| dimensionless deviatoric bed elevation
| dimensionless bed surface elevation
| -
| -
|-
|-
| ξ<sub>dev</sub>
| G<sub>feed</sub>
| deviatoric bed elevation
| mean annual rate of bed material load available for deposition (include wash load)
| m
| -
|-
|-
| B<sub>bf</sub>
| G<sub>t,feed</sub>
| bankfull channel width
| mean annual feed rate of bed material load available for deposition in the reach
| m
| -
|-
|-
| H<sub>bf</sub>
| L<sub>V</sub>
| bankfull channel depth
| valley length
| m
| -
|-
|-
| η
| H<sub>n</sub>
| bed elevation
| normal depth at given Q<sub>bf</sub> and Q<sub>tbf,feed</sub>
| m
| L
|-
|-
| T
| S<sub>n</sub>
| channel-forming Shields number
| normal slope at given Q<sub>bf</sub> and Q<sub>tbf,feed</sub>
| -
| -
|-
|-
| X
| B<sub>n</sub>
| initial water surface elevation
| normal width at given Q<bf> and Q<sub>tbf,feed</sub>
| m
| -
|-
|-
| t
| Fr<sub>n</sub>
| time interval for plotting
| normal Froude number at given Q<sub>bf</sub> and Q<sub>tbf,feed</sub>
| yr
|-
| p
| number of prints
| -
| -
|-
|-
|}
|}
   </div>
   </div>
</div>
</div>
==Notes==
==Notes==
Assumptions used in the model:
a) Downchannel reach length L is specified; x = L corresponds to the point where sea level is specified;
b) The river is assumed to have a floodplain width B<sub>f</sub> that is constant, and is much larger than bankfull width B<sub>bf</sub>.
c) The river is sand-bed with characteristic size D.
d) All the bed material sediment is transported at rate Q<sub>tbf</sub> during a period constituting (constant) fraction I<sub>f</sub> of the year, at which the flow is approximated as at bankfull flow, so that the annual yield = I<sub>f</sub>Q<sub>tbf</sub>.
e) Sediment is deposited across the entire width of the floodplain as the channel migrates and avulses.  For every mass unit of bed material load deposited, Λ mass units of wash load are deposited in the floodplain. It is assumed that the supply of wash load from upstream is always sufficient for deposition at such a rate. In addition, it is assumed for simplicity that the porosity of the floodplain deposits is equal to that of the channel deposits.  In fact the floodplain deposits are likely to have a lower porosity.
f)  Sea level rise is constant at rate ξ<sub>d</sub>.  For example, during the period 5,000 – 17,000 BP the rate of rise can be approximated as 1 cm per year.
g) The river is meandering throughout sea level rise, and has constant sinuosity Ω.


h) The flow can be approximated using the normal-flow assumptions.  (But the analysis easily generalizes to a full backwater formulation.)
In the equations, is if β > 1 then the there is not enough sediment feed over the reach to fill the space created by sea level rise, and the sediment transport rate must drop to zero before the shoreline is reached.  If β < 1 the excess sediment is delivered to the sea. If for a given rate of sea level rise ξ<sub>d</sub> it is found that β > 1 for reasonable values of reach length L, floodplain width Bf and sediment feed rate Gfeed, no steady state solution exists for that rate of sea level rise.


==Examples==
==Examples==
Line 337: Line 504:


<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
* <span class="remove_this_tag">Upload file: http://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Upload file: https://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>


Line 343: Line 510:


==Developer(s)==
==Developer(s)==
<span class="remove_this_tag">Name of the module developer(s)</span>
[[User:Gparker|Gary Parker ]]


==References==
==References==
<span class="remove_this_tag">Key papers</span>
* Bard, E., Hamelin, B., and Fairbanks, R.G., 1990, U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years, Nature 346, 456-458.Doi [[http://dx.doi.org/10.1038/346456a0 10.1038/346456a0]]
 
* Fisk, H.N., 1944, Geological investigations of the alluvial valley of the lower Mississippi River, Report,  U.S. Army Corp of Engineers, Mississippi River Commission, Vicksburg, MS.
 
* Pirmez, C., 1994, Growth of a Submarine meandering channel-levee system on Amazon Fan, Ph.D. thesis, Columbia University, New York, 587 p.
 
* Paola, C., P. L. Heller and C. L. Angevine, 1992, The large-scale dynamics of grain-size variation in alluvial basins.  I: Theory, Basin Research, 4, 73-90.
 
* Parker, G., and Y. Cui, 1998, The arrested gravel front: stable gravel-sand transitions in rivers.  Part 1: Simplified analytical solution, Journal of Hydraulic Research, 36(1): 75-100.
 
* Parker, G., Paola, P., Whipple, K. and Mohrig, D., 1998, Alluvial fans formed by channelized fluvial and sheet flow: theory, Journal of Hydraulic Engineering, 124(10), pp. 1-11. Doi: [[http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:10(985) 10.1061/(ASCE)0733-9429(1998)124:10(985)]]
 
* Sinha, S. K. and Parker, G., 1996, Causes of concavity in longitudinal profiles of rivers, Water Resources Research 32(5),1417-1428. Doi: [[http://dx.doi.org/10.1029/95WR03819 10.1029/95WR03819]]
 
* USCOE, 1935., Studies of river bed materials and their movement, with special reference to the lower Mississippi River,  Paper 17 of the U.S. Waterways Experiment Station, Vicksburg, MS.
 
* Yatsu, E., 1955, On the longitudinal profile of the graded river, Transactions, American Geophysical Union, 36: 655-663.


==Links==
==Links==
<span class="remove_this_tag">Any link, eg. to the model questionnaire, etc.</span>
[[Model:SteadyStateAg]]


[[Category:Modules]] [[Category:Utility components]]
[[Category:Utility components]]

Latest revision as of 17:18, 19 February 2018

The CSDMS Help System
The CSDMS Help System

SteadyStateAg

This model is a calculator for approach to equilibrium in recirculating and feed flumes

Model introduction

This program implements the calculation for steady-state aggradation of a sand-bed river in response to sea level rise at a constant rate.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
Mean annual bed material sediment feed rate Mt / yr
Reach length (downchannel distance) km
Rate of sea level rise mm / yr
Bankfull water discharge m3 / s
Floodplain width km
Grain size grain diameter mm
Fraction wash load deposited per unit bed material deposited -
Channel-forming Shield number -
Coefficient in Engelund-Hansen bed material load relation -
Bed porosity -
Flood intermittence -
Chezy resistance coefficient -
Channel sinuosity -
Submerged specific gravity of seidment -
Initial water surface elevation m
Time interval for plotting yr
Number of prints desired -
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Exner equation
<math> \left ( 1 - \lambda_{p} \right ) {\frac{\partial \eta}{\partial t}} = - \Omega {\frac{I_{f} \left ( 1 + \Lambda \right )}{B_{f}}} {\frac{\partial Q_{tbf}}{\partial x}} </math> (1)
  • Relation for sediment transport

1) Dimensionless bankfull width

<math> \hat{B} = {\frac{C_{f}}{\alpha_{EH} \left ( \tau_{form}^* \right ) ^ \left (2.5 \right )}} \hat{Q}_{t} </math> (2)

2) Down-channel bed slope

<math> S = {\frac{R^ \left ({\frac{3}{2}}\right ) C_{f}^ \left ({\frac{1}{2}}\right )}{\alpha_{EH} \tau_{form}^*}} {\frac{\hat{Q}_{t}}{\hat{Q}}} </math> (3)

3) Dimensionless bankfull depth

<math> \hat{H} = {\frac{\alpha_{EH} \left ( \tau_{form} \right )^2}{\left ( R C_{f} \right ) ^\left ({\frac{1}{2}}\right )}}{\frac{\hat{Q}}{\hat{Q}_{t}}} </math> (4)

4) Total volume bed material load at bankfull flow

<math> Q_{tbf} = {\frac{\alpha_{EH} \tau_{form}^*}{R C_{f} ^ \left ({\frac{1}{2}}\right )}} Q_{bf} S </math> (5)

5) Reduction of the Exner equation

<math> {\frac{\partial \eta}{\partial t}} = \kappa_{d}{\frac{\partial ^2 \eta}{\partial x^2}} </math> (6)

6) Kinematic sediment diffusivity

<math> \kappa_{d} = {\frac{I_{f} \Omega \left ( 1 + \Lambda \right )}{\left ( 1 - \lambda_{p}\right ) B_{f}}} {\frac{\alpha _{EH} \tau_{form}^* Q_{bf}}{R C_{f}^\left ({\frac{1}{2}}\right )}} </math> (7)
  • Bed elevation
<math> \eta = \xi_{do} + \xi_{d} t + \eta_{dev} \left (x, t \right ) </math> (8)
  • Steady-State aggradation in response to sea level rise condition
<math> {\frac{\partial \eta_{dev}}{\partial t}} = 0 </math> (9)
<math> \hat{x} = {\frac{x}{L}} </math> (10)
<math> \hat{\eta} = {\frac{\eta_{dev}}{L}} </math> (11)
<math> {\frac{Q_{tbf}}{Q_{tbf,feed}}} = {\frac{S}{S_{u}}} = 1 - \beta \hat{x} </math> (12)
<math> \beta = {\frac{\left ( 1 - \lambda_{p}\right ) B_{f} \xi_{d} L}{I_{f} \Omega \left ( 1 + \Lambda \right ) Q_{tbf,feed}}} = {\frac{G_{fill}}{G_{feed}}} </math> (13)

1) Sediment delivery rate

<math> Q_{tbf} = Q_{tbf,feed} - {\frac{\left (1 - \lambda_{p} \right ) B_{f}}{I_{f} \Omega \left ( 1 + \Omega \right )}} \xi_{d} X </math> (14)

2)Upstream slope at x = 0

<math> S_{u} = {\frac{R C_{f}^\left ({\frac{1}{2}}\right )}{\alpha_{EH} \tau_{form}^*}} {\frac{Q_{tbf,feed}}{Q_{bf}}} </math> (15)

3) Elevation profile

<math> \hat{\eta} = S_{u} [\left ( 1 - {\frac{1}{2}} \beta \right ) - \hat{x} + {\frac{1}{2}} \beta \hat{x}^2] </math> (16)
  • Mean annual rate available for deposition
<math> G_{feed} = \left ( 1 + \Lambda \right ) G_{t,feed} = \left ( 1 + \Lambda \right ) \left ( R + 1 \right ) Q_{tbf,feed} I_{f} </math> (17)
  • Amount of sediment required to fill a reach at a uniform aggradation rate
<math> G_{fill} = \left ( R + 1 \right ) \left ( 1 - \lambda_{p} \right ) B_{f} L_{v} \xi_{d} </math> (18)

Notes

Assumptions used in the model:

a) Downchannel reach length L is specified; x = L corresponds to the point where sea level is specified;

b) The river is assumed to have a floodplain width Bf that is constant, and is much larger than bankfull width Bbf.

c) The river is sand-bed with characteristic size D.

d) All the bed material sediment is transported at rate Qtbf during a period constituting (constant) fraction If of the year, at which the flow is approximated as at bankfull flow, so that the annual yield = IfQtbf.

e) Sediment is deposited across the entire width of the floodplain as the channel migrates and avulses. For every mass unit of bed material load deposited, Λ mass units of wash load are deposited in the floodplain. It is assumed that the supply of wash load from upstream is always sufficient for deposition at such a rate. In addition, it is assumed for simplicity that the porosity of the floodplain deposits is equal to that of the channel deposits. In fact the floodplain deposits are likely to have a lower porosity.

f) Sea level rise is constant at rate ξd. For example, during the period 5,000 – 17,000 BP the rate of rise can be approximated as 1 cm per year.

g) The river is meandering throughout sea level rise, and has constant sinuosity Ω.

h) The flow can be approximated using the normal-flow assumptions. (But the analysis easily generalizes to a full backwater formulation.)

In the equations, is if β > 1 then the there is not enough sediment feed over the reach to fill the space created by sea level rise, and the sediment transport rate must drop to zero before the shoreline is reached. If β < 1 the excess sediment is delivered to the sea. If for a given rate of sea level rise ξd it is found that β > 1 for reasonable values of reach length L, floodplain width Bf and sediment feed rate Gfeed, no steady state solution exists for that rate of sea level rise.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Bard, E., Hamelin, B., and Fairbanks, R.G., 1990, U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years, Nature 346, 456-458.Doi [10.1038/346456a0]
  • Fisk, H.N., 1944, Geological investigations of the alluvial valley of the lower Mississippi River, Report, U.S. Army Corp of Engineers, Mississippi River Commission, Vicksburg, MS.
  • Pirmez, C., 1994, Growth of a Submarine meandering channel-levee system on Amazon Fan, Ph.D. thesis, Columbia University, New York, 587 p.
  • Paola, C., P. L. Heller and C. L. Angevine, 1992, The large-scale dynamics of grain-size variation in alluvial basins. I: Theory, Basin Research, 4, 73-90.
  • Parker, G., and Y. Cui, 1998, The arrested gravel front: stable gravel-sand transitions in rivers. Part 1: Simplified analytical solution, Journal of Hydraulic Research, 36(1): 75-100.
  • Parker, G., Paola, P., Whipple, K. and Mohrig, D., 1998, Alluvial fans formed by channelized fluvial and sheet flow: theory, Journal of Hydraulic Engineering, 124(10), pp. 1-11. Doi: [10.1061/(ASCE)0733-9429(1998)124:10(985)]
  • Sinha, S. K. and Parker, G., 1996, Causes of concavity in longitudinal profiles of rivers, Water Resources Research 32(5),1417-1428. Doi: [10.1029/95WR03819]
  • USCOE, 1935., Studies of river bed materials and their movement, with special reference to the lower Mississippi River, Paper 17 of the U.S. Waterways Experiment Station, Vicksburg, MS.
  • Yatsu, E., 1955, On the longitudinal profile of the graded river, Transactions, American Geophysical Union, 36: 655-663.

Links

Model:SteadyStateAg