Model help:DepDistTotLoadCalc: Difference between revisions

From CSDMS
Created page with "<!-- How to create a new "Model help" page: 1) Log in to the wiki 2) Create a new page for each model, by using the following URL: * http://csdms.colorado.edu/wiki/Model help:..."
 
m Text replacement - "http://csdms.colorado.edu/wiki/" to "https://csdms.colorado.edu/wiki/"
 
(12 intermediate revisions by 2 users not shown)
Line 3: Line 3:
1) Log in to the wiki
1) Log in to the wiki
2) Create a new page for each model, by using the following URL:
2) Create a new page for each model, by using the following URL:
   * http://csdms.colorado.edu/wiki/Model help:<modelname>
   * https://csdms.colorado.edu/wiki/Model help:<modelname>
   * Replace <modelname> with the name of a model
   * Replace <modelname> with the name of a model
3) Than follow the link "edit this page"
3) Than follow the link "edit this page"
Line 17: Line 17:


==Model introduction==
==Model introduction==
This program calculates the same parameters as WPHydResAMBL, as well as calculating the Entrainment, Chézy coefficient, bedload ratios, and various other parameters.
This model is a Depth-Discharge and Total Load calculator, uses:
This model is a Depth-Discharge and Total Load calculator, uses:
 
1. Wright-Parker formulation for flow resistance,
  1. Wright-Parker formulation for flow resistance,
2. Ashida-Michiue formulation for bedload transport,
  2. Ashida-Michiue formulation for bedload transport,
3. Wright-Parker formulation (without stratification) for suspended load.  
  3. Wright-Parker formulation (without stratification) for suspended load.  


<div id=CMT_MODEL_PARAMETERS>
<div id=CMT_MODEL_PARAMETERS>
==Model parameters==
==Model parameters==
= First tab header =
= Input Files and Directories =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0" cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|Input directory
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|path to input files
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"|
|-
|Site prefix
|Site prefix for Input/Output files
|
|-
|Case prefix
|Case prefix for Input/Output files
|
|-
|}
|}


= Second tab header =
= Run Parameters =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
|-
!Parameter!!Description!!Unit
!Parameter!!Description!!Unit
|-valign="top"
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="20%"|bed slope (S)
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="60%"|
|width="20%"|<span class="remove_this_tag">[Units]</span>
|width="20%"| -
|-
|median sediment size (D50)
|
| mm
|-
|90% passing sediment size (D90)
|diameter such that 90% of the distribution is finer
| mm
|-
|factor such that ks = n*D90
|
| -
|-
|submerged specific gravity of sediment (R)
|
| -
|-
|kinematic viscosity of water (v)
|
| m<sup>2</sup> / s
|-
|low end value of Hs
| low end value of water depth due to skin friction
| m
|-
|step size for Hs
| step size for water depth due to skin friction
| m
|-
|number of steps to make for Hs
|
| m
|-
|}
|}


= Etc. tab header =
= About =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
!Parameter!!Description!!Unit
|-valign="top"
|width="20%"|Model name
|width="60%"|name of the model
|width="20%"| -
|-
|Author name
|name of the model author
| -
|-
|}
<headertabs/>
<headertabs/>
</div>


==Uses ports==
==Uses ports==
Line 61: Line 116:
|}
|}
::::{|
::::{|
|width=500px|<math>U = 8.32 sqrt \left (g H_{s} S \right ) \left ( {\frac{H_{s}}{k_{s}}} \right ) ^ \left ( {\frac{1}{6}} \right ) </math>
|width=500px|<math>U = 8.32 \sqrt {g H_{s} S } \left ( {\frac{H_{s}}{k_{s}}} \right ) ^ \left ( {\frac{1}{6}} \right ) </math>
|width=50px align="right"|(2)
|width=50px align="right"|(2)
|}
|}
::::{|
::::{|
|width=500px|<math>H = \left ( \Gamma {\frac{R D_{s50}}{S}} \left ( {\frac{sqrt \left ( g \right )}{U}} \right ) ^ \left ( 0.7 \right ) \right ) ^ \left ( {\frac{20}{13}} \right ) </math>
|width=500px|<math>H = \left ( \Gamma {\frac{R D_{s50}}{S}} \left ( {\frac{\sqrt { g }}{U}} \right ) ^ \left ( 0.7 \right ) \right ) ^ \left ( {\frac{20}{13}} \right ) </math>
|width=50px align="right"|(3)
|width=50px align="right"|(3)
|}
|}
Line 77: Line 132:
|}
|}
::::{|
::::{|
|width=500px|<math>F_{r}= {\frac{U}{sqrt \left ( g H \right )}} </math>
|width=500px|<math>F_{r}= {\frac{U}{\sqrt { g H }}} </math>
|width=50px align="right"|(6)
|width=50px align="right"|(6)
|}
|}
::::{|
::::{|
|width=500px|<math>u_{*} = sqrt \left ( g H S \right ) </math>
|width=500px|<math>u_{*} = \sqrt { g H S } </math>
|width=50px align="right"|(7)
|width=50px align="right"|(7)
|}
|}
::::{|
::::{|
|width=500px|<math>u_{*s} = sqrt \left ( g H_{s} S \right ) </math>
|width=500px|<math>u_{*s} = \sqrt { g H_{s} S } </math>
|width=50px align="right"|(8)
|width=50px align="right"|(8)
|}
|}
::::{|
::::{|
|width=500px|<math>q_{b} = sqrt \left ( R g D_{50} \right ) D_{50} \left ( \tau _{s} ^* -0.05 \right ) \left ( sqrt \left ( \tau _{s} ^*  \right ) -  sqrt \left ( 0.05 \right ) \right ) </math>
|width=500px|<math>q_{b} = \sqrt { R g D_{50}} D_{50} \left ( \tau _{s} ^* -0.05 \right ) \left ( \sqrt { \tau _{s} ^*  } \sqrt { 0.05 } \right ) </math>
|width=50px align="right"|(9)
|width=50px align="right"|(9)
|}
|}
Line 101: Line 156:
|}
|}
::::{|
::::{|
|width=500px|<math>Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) S \left ( 0.07 \right ) </math>
|width=500px|<math>Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) S ^ \left ( 0.07 \right ) </math>
|width=50px align="right"|(12)
|width=50px align="right"|(12)
|}
|}
Line 117: Line 172:
|}
|}
::::{|
::::{|
|width=500px|<math>I = \Sigma \left ( {\frac{\left ( 1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta _{b} \right ) / \zeta_{b}}} \right ) ^ {\frac{V_{s}}{\kappa u_{*}}} ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right ) d \zeta </math>
|width=500px|<math>I = \int _{\zeta _{b}} ^ 1 [ {\frac{\left ( 1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta _{b} \right ) / \zeta_{b}}} ] ^ {\frac{V_{s}}{\kappa u_{*}}} ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right ) d \zeta </math>
|width=50px align="right"|(16)
|width=50px align="right"|(16)
|}
|}
Line 133: Line 188:
| D<sub>50</sub>
| D<sub>50</sub>
| median sediment size
| median sediment size
| mm
| L
|-
|-
| D<sub>90</sub>
| D<sub>90</sub>
| size such that 90% of the the sediment if finer
| size such that 90% of the the sediment if finer
| mm
| L
|-
|-
| k<sub>s</sub>
| k<sub>s</sub>
| grain roughness height
| grain roughness height
| mm
| L
|-
|-
| R
| R
Line 149: Line 204:
| ν
| ν
| kinematic viscosity of water
| kinematic viscosity of water
| m<sup>2</sup> / s
| L<sup>2</sup> / T
|-
|-
| n<sub>k</sub>
| n<sub>k</sub>
| factor such that k<sub>s</sub> = n<sub>k</sub> D<sub>s90</sub>
| factor such that k<sub>s</sub> = n<sub>k</sub> D<sub>s90</sub>
| kg/m<sup>3</sup>
| M / L<sup>3</sup>
|-
| v<sub>s</sub>
| fall velocity of size D<sub>s50</sub>
| L / T
|-
| H<sub>s</sub>
| depth associated with skin friction
| L
|-
| g
| acceleration due to gravity
| L / T<sup>2</sup>
|-
| u<sub>*s</sub>
| shear velocity due to skin friction
| L / T
|-
| C<sub>z</sub>
| dimensionless Chezy resistance coefficient
| -
|-
|-
| Re<sub>p</sub>
| k<sub>c</sub>
|  
| composite roughness height associated with both skin friction and form drag
|  
| -
|-
|-
| R<sub>f</sub>
| E
|  
| dimensionless rate of entrainment of bed sediment into suspension
| -
| -
|-
|-
| v<sub>s</sub>
| ζ
| fall velocity of size D<sub>s50</sub>
| dimensionless upward normal coordinate
| cm / s
| -
|-
|-
| τ<sub>b</sub>
| ζ<sub>b</sub>
| boundary shear stress on the bed
| equals to 0.05
| kg / (m s)
| -
|-
|-
| u
| z<sub>u</sub>
| shear velocity on the bed
| parameter has no physical meaning
| m / s
| -
|-
|-
| q<sub>bi</sub>
| s
| volume gravel bedload transport per unit width of grains in the ith size range
| step size for water depth due to skin friction
| m <sup>2</sup>
| L
|-
|-
| u<sub>*</sub>
| d
| shear velocity
| median sediment diameter
| m / s
| L
|-
|-
| D<sub>lg</sub>
| D
| geometric mean of the bedload
| diameter such that 90% of the distribution is finer
| mm
| L
|-
|-
| σ<sub>lg</sub>
| κ
| geometric standard deviation of the bedload
| Von Karmen coefficient, equals to 0.4
| -
| -
|- 
| D<sub>sx</sub>
| size in the surface material, such that x percentage of the material is finer
| mm
|-
|-
| D<sub>lx</sub>
| n
| size in the bedload material, such that x percentage of the material is finer
| factor in the roughness height calculation
| -
| -
|- 
| D<sub>sx</sub>
| size in the surface material, such that x percentage of the material is finer
| mm
|-
|-
| H<sub>s</sub>
| N
| depth associated with skin friction
| number of steps to make
| m
| -
|-
|-
| U
| a
| depth- or cross sectionally-averaged flow velocity or layer-average velocity (turbidity current)
| factor for stratification (if not included it will be assumed 1)
| m / s
| -
|-
|-
| H
| Re<sub>p</sub>
| cross-sectionally averaged flow depth (river) or flow thickness (turbidity current)
| explicit particle Reynolds number
| m
| -
|-
|-
| q<sub>w</sub>
| D<sub>s50</sub>
| water discharge per unit width
| median sediment size of the surface layer sediment
| m<sup>2</sup> / s
| -
|-
|-
| τ<sup>*</sup>
| U
| Shields number
| depth- or cross sectionally-averaged flow velocity or layer-average velocity (turbidity current)
| -
| L / T
|-
|-
| F<sup>r</sup>
| F<sub>r</sub>
| Froude number
| Froude number
| -
| -
|-
|-
| u<sup>*</sup>
| u<sub>*</sub>
| shear velocity
| shear velocity
| m / s
| L / T
|-
| H
| cross-sectionally averaged flow depth (river) or flow thickness (turbidity current)
| L
|-
|-
| u<sup>*s</sup>
| τ<sup>*</sup>
| shear velocity due to skin friction
| actual shields stress
| m / s
| -
|-
| q<sup>b</sup>
| volume bedload transport rate per unit width
| m<sup>2</sup> / s
|-
| q<sup>b</sup>
| volume bedload transport rate per unit width
| m<sup>2</sup> / s
|-
|-
| C<sup>z</sup>
| τ<sub>s</sub><sup>*</sup>
| dimensionless Chezy resistance coefficient
|Shields stress due to skin friction
| -
| -
|-
|-
| k<sup>c</sup>
| Γ
| composite roughness height associated with both skin friction and form drag
| parameter with no physical meaning (used in calculations of H)
| -
| -
|-
|-
| E
|}
| dimensionless rate of entrainment of bed sediment into suspension
'''Output'''
| m<sup>2</sup> / s
{| {{Prettytable}} class="wikitable sortable"
!Symbol!!Description!!Unit
|-
|-
| I
| I
|  
| results of the integral
|  
| -
|-
|-
| q<sup>s</sup>
| q<sub>s</sub>
| volume suspended load transport rate per unit width
| volume suspended load transport rate per unit width
| m <sup>2</sup> / s
| L <sup>2</sup> / T
|-
|-
| q<sup>t</sup>
| q<sub>t</sub>
| volume total bed material transport rate per unit width
| volume total bed material transport rate per unit width
| m<sup>2</sup> / s
| L<sup>2</sup> / T
|-
| q<sub>w</sub>
| water discharge per unit width
| L<sup>2</sup> / T
|-
|-
| ζ
| q<sub>b</sub>
| dimensionless upward normal coordinate
| volume bedload transport rate per unit width
| -
| L<sup>2</sup> / T
|-
|-
|}
|}


   </div>
   </div>
</div>
</div>
==Notes==
==Notes==
<span class="remove_this_tag">Any notes, comments, you want to share with the user</span>
* Note on model running
 
The program shares the notes that are expressed in WPHydResAMBL.
<span class="remove_this_tag">Numerical scheme</span>


The integration carried out in this program is performed with the trapezoidal rule.


==Examples==
==Examples==
Line 286: Line 353:


<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
* <span class="remove_this_tag">Upload file: http://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Upload file: https://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>


Line 295: Line 362:


==References==
==References==
<span class="remove_this_tag">Key papers</span>
* Wright, S. and Parker, G., 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering.
 
* Ashida, K. and M. Michiue, 1972, Study on hydraulic resistance and bedload transport rate in alluvial streams, Transactions, Japan Society of Civil


==Links==
==Links==
* [[http://csdms.colorado.edu/wiki/Model:DepDistTotLoadCalc Model:DepDistTotLoadCalc]]
* [[Model:DepDistTotLoadCalc]]
 
* [[Model_help:WPHydResAMBL]]


[[Category:Utility components]]
[[Category:Utility components]]

Latest revision as of 17:15, 19 February 2018

The CSDMS Help System
The CSDMS Help System

DepDistTotLoadCalc

This is an illustration of calculation of depth-discharge relation, bed load transport, suspended load transport and total bed material load for a large, low-slope sand-bed river.

Model introduction

This program calculates the same parameters as WPHydResAMBL, as well as calculating the Entrainment, Chézy coefficient, bedload ratios, and various other parameters.

This model is a Depth-Discharge and Total Load calculator, uses: 1. Wright-Parker formulation for flow resistance, 2. Ashida-Michiue formulation for bedload transport, 3. Wright-Parker formulation (without stratification) for suspended load.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
bed slope (S) -
median sediment size (D50) mm
90% passing sediment size (D90) diameter such that 90% of the distribution is finer mm
factor such that ks = n*D90 -
submerged specific gravity of sediment (R) -
kinematic viscosity of water (v) m2 / s
low end value of Hs low end value of water depth due to skin friction m
step size for Hs step size for water depth due to skin friction m
number of steps to make for Hs m
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

<math>\tau_{s} ^* = {\frac{H_{s} S}{R D_{50}}} </math> (1)
<math>U = 8.32 \sqrt {g H_{s} S } \left ( {\frac{H_{s}}{k_{s}}} \right ) ^ \left ( {\frac{1}{6}} \right ) </math> (2)
<math>H = \left ( \Gamma {\frac{R D_{s50}}{S}} \left ( {\frac{\sqrt { g }}{U}} \right ) ^ \left ( 0.7 \right ) \right ) ^ \left ( {\frac{20}{13}} \right ) </math> (3)
<math>\Gamma = \left ( {\frac{\tau_{s} ^* - 0.05}{0.7}} \right ) ^ \left ( {\frac{5}{4}} \right ) </math> (4)
<math>\tau^* = {\frac {H S}{R D_{50}}} </math> (5)
<math>F_{r}= {\frac{U}{\sqrt { g H }}} </math> (6)
<math>u_{*} = \sqrt { g H S } </math> (7)
<math>u_{*s} = \sqrt { g H_{s} S } </math> (8)
<math>q_{b} = \sqrt { R g D_{50}} D_{50} \left ( \tau _{s} ^* -0.05 \right ) \left ( \sqrt { \tau _{s} ^* } - \sqrt { 0.05 } \right ) </math> (9)
<math>C_{z} = {\frac{U}{u_{*}}} </math> (10)
<math>k_{c} = {\frac{11H}{e^ \left ( \kappa C_{z} \right )}} </math> (11)
<math>Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) S ^ \left ( 0.07 \right ) </math> (12)
<math>E = {\frac{5.7 * 10^\left ( -7 \right ) Z_{u} ^5}{1 + {\frac{5.7 * 10^\left ( -7 \right )}{0.3}} Z_{u} ^5}} </math> (13)
<math>q_{s} = {\frac{u_{*} E H}{\kappa}} I </math> (14)
<math>q_{t} = q_{s} + q_{b} </math> (15)
<math>I = \int _{\zeta _{b}} ^ 1 [ {\frac{\left ( 1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta _{b} \right ) / \zeta_{b}}} ] ^ {\frac{V_{s}}{\kappa u_{*}}} ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right ) d \zeta </math> (16)

Notes

  • Note on model running

The program shares the notes that are expressed in WPHydResAMBL.

The integration carried out in this program is performed with the trapezoidal rule.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Wright, S. and Parker, G., 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering.
  • Ashida, K. and M. Michiue, 1972, Study on hydraulic resistance and bedload transport rate in alluvial streams, Transactions, Japan Society of Civil

Links