Cite CSDMS: Difference between revisions

From CSDMS
 
(6 intermediate revisions by 3 users not shown)
Line 9: Line 9:
* Campbell, K., Overeem, I., Berlin, M., 2013. Taking it to the Streets: the Case for Modeling in the Geosciences Undergraduate Curriculum. Computers and Geosciences, 53, 123-128. https://doi.org/10.1016/j.cageo.2011.09.006
* Campbell, K., Overeem, I., Berlin, M., 2013. Taking it to the Streets: the Case for Modeling in the Geosciences Undergraduate Curriculum. Computers and Geosciences, 53, 123-128. https://doi.org/10.1016/j.cageo.2011.09.006


===BMI & WMT===
===BMI===
* den Haan, R.J., van der Voort, M.C., Baart, F., Berends, K.D., van den Berg, M.C., Straatsma, M.W., Geenen, A.J.P., and Hulscher, S.J.M.H., 2020.  The Virtual River Game: Gaming using models to collaboratively explore river management complexity.  Journal of Environmental Modelling and Software.  doi:10.1016/j.envsoft.2020.104855
* Hoch, J.M., Eilander, D., Ikeuchi, H., Baart, F., and Winsemius, H.C., 2019. Integrating large-scale hydrology and hydrodynamics for nested flood hazard modelling from the mountains to the coast. Natural Hazards and Earth System Sciences Discussions. doi:10.5194/nhess-2019-75
* Hutton, E.W.H., Piper, M.D., and Tucker, G.E., 2020. The Basic Model Interface 2.0: A standard interface for coupling numerical models in the geosciences. JOSS. https://doi.org/10.21105/joss.02317.
* Hutton, E.W.H., Piper, M.D., and Tucker, G.E., 2020. The Basic Model Interface 2.0: A standard interface for coupling numerical models in the geosciences. JOSS. https://doi.org/10.21105/joss.02317.
* Iwanaga, T., Partington, D., Ticehurst, J., Croke, B.F.W., and Jakeman, A.J., 2020. A socio-environmental model for exploring sustainable water management futures: Participatory and collaborative modelling in the Lower Campaspe catchment.  Journal of Hydrology: Regional Studies. doi:10.1016/j.ejrh.2020.100669
* Wang, K., Jafarov, E., and Overeem, I., 2020. Sensitivity evaluation of the Kudryavtsev permafrost model.  Journal of Science of the Total Environment. doi:10.1016/j.scitotenv.2020.137538
* Peckham, S.D., Hutton, E.W.H., and Norris, B., 2013. A component-based approach to integrated modeling in the geosciences: The design of CSDMS. ''Computers & Geosciences'', '''53''', 3-12. https://doi.org/10.1016/j.cageo.2012.04.002.
* Peckham, S.D., Hutton, E.W.H., and Norris, B., 2013. A component-based approach to integrated modeling in the geosciences: The design of CSDMS. ''Computers & Geosciences'', '''53''', 3-12. https://doi.org/10.1016/j.cageo.2012.04.002.
===PyMT===
* Ratliff, K.M., Hutton, E.H.W., and Murray, A.B., 2021. Modeling long-term delta dynamics reveals persistent geometric river avulsion locations, Earth and Planetary Science Letters, 559, doi:10.1016/j.epsl.2021.116786.
* Ratliff, K.M., Hutton, E.H.W., and Murray, A.B., 2018. Exploring Wave and Seal-Level Rise Effects on Delta Morphodynamics with a Coupled River-Ocean Model.  JGR Earth Surface.  doi:10.1029/2018JF004757
* Wang, K., Jafarov, E., and Overeem, I., 2020. Sensitivity evaluation of the Kudryavtsev permafrost model.  Journal of Science of the Total Environment, June 2020. doi:10.1016/j.scitotenv.2020.137538
===Landlab===
* Barnhart, K.R., Hutton, E.W.H., Tucker, G.E., Gasparini, N.M., Istanbulluoglu, E., Hobley, D.E.J., Lyons⁠, N.J., Mouchene, M., Nudurupati, S.S., Adams, J.M., and Bandaragoda, C. (2020) Short communication: Landlab 2.0: A software package for Earth surface dynamics. Earth Surface Dynamics, 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020.
* Hobley, D. E., Adams, J. M., Nudurupati, S. S., Hutton, E. W., Gasparini, N. M., Istanbulluoglu, E., & Tucker, G. E. (2017) Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surface Dynamics. https://doi.org/10.5194/esurf-5-21-2017.
===Landlab Components, Tools, and Packages===
* Adams, J.M., Gasparini, N.M., Hobley, D.E.J., Tucker, G.E., Hutton, E.W.H., Nudurupati, S.S., and Istanbulluoglu, E. The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds. Geoscientific Model Development, 2017, doi:10.5194/gmd-10-1645-2017
* Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E. (2019) Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution. Geosci. Model Dev., v. 12, p. 1267-1297, doi:10.5194/gmd-12-1267-2019.
* Barnhart, K. R., Hutton, E. W., Gasparini, N. M., & Tucker, G. E. (2018). Lithology: A Landlab submodule for spatially variable rock properties. J. Open Source Software, 3(30), 979, doi:10.21105/joss.00979
* Barnhart, K.R., Hutton, E., and Tucker, G.E. (2019) umami: a Python package for Earth surface dynamics objective function construction, Journal of Open Source Software, 4(42), 1776, doi:10.21105/joss.01776.
* Litwin, D.G., Tucker, G.E., Barnhart, K.R., and Harman, C.J. (2020) GroundwaterDupuitPercolator: A Landlab component for groundwater flow, Journal of Open Source Software, 5(46), 1935, https://doi.org/10.21105/joss.01935.
* Lyons, N.J., Albert, J.S., and Gasparini, N.M. (2020). SpeciesEvolver: A Landlab component to evolve life in simulated landscapes. Journal of Open Source Software, 5(46), 2066, https://doi.org/10.21105/joss.02066.
* Pfeiffer, A.M., Barnhart, K.R., Czuba, J.A., and Hutton, E.W.H. (2020). NetworkSedimentTransporter: A Landlab component for bed material transport through river networks. Journal of Open Source Software, 5(53), 2341, https://doi.org/10.21105/joss.02341.
* Shobe, C.M., Tucker, G.E., and Barnhart, K.R. The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution. Geoscientific Model Development, 2017, doi:10.5194/gmd-10-4577-2017
* Tucker, G.E., Hobley, D.E.J., Hutton, E., Gasparini, N.M., Istanbulluoglu, E., Adams, J.M., and Nudurupati, S.S. (2016) CellLab-CTS 2015: Continuous-time stochastic cellular automaton modeling using Landlab. Geoscientific Model Development., v. 9, p. 823-839, https://doi.org/10.5194/gmd-9-823-2016
===CSDMS Efforts on integration of deep learning in models===
* Chen, M., Qian, Z., Boers, N., Jakeman, A.J., Kettner, A.J., Brandt, M., Kwan, M.-P., Batty, M., Li, W., Zhu, R., Luo W., Ames, D.P., Barton, C.M., Cuddy, S.M., Koirala, S., Zhan, F., Ratti, C., Liu, J., Zhong, T., Liu, J., Wen, Y., Yue, S., Zhu, Z., Zhang, Z., Sun, Z., Lin, J., Ma, Z., He, Y., Xu, K., Zhang, C., Lin, H., and Lü, G., 2023. Iterative integration of deep learning in hybrid Earth Surface System Modeling. Nature Reviews - Earth & Environment, 4, 568–581. https://doi.org/10.1038/s43017-023-00452-7.


===Standard Names===
===Standard Names===
Line 17: Line 44:


===CSDMS Efforts on Model Uncertainty===
===CSDMS Efforts on Model Uncertainty===
* Barnhart, K.R., Tucker, G.E., Doty, S.G., Glade, R. C., Shobe, C.M., Rossi, M., and Hill, M.C. (2020) Projections of landscape evolution on a 10,000 year timescale with assessment and partitioning of uncertainty sources. Journal of Geophysical Research: Earth Surface, 125, 7, https://doi.org/ 10.1029/2020JF005795.
* Kettner, A.J., and Syvitski, J.P.M., 2016. Uncertainty and Sensitivity in Surface Dynamics Modeling. ''Computers & Geosciences'', '''90 part B''', 1-5. https://doi.org/10.1016/j.cageo.2016.03.003.  
* Kettner, A.J., and Syvitski, J.P.M., 2016. Uncertainty and Sensitivity in Surface Dynamics Modeling. ''Computers & Geosciences'', '''90 part B''', 1-5. https://doi.org/10.1016/j.cageo.2016.03.003.  
* Peckham, S.D., Kelbert, A., Hill, M.C., and Hutton, E.W.H., 2016. Towards uncertainty quantification and parameter estimation for Earth system models in a component-based modeling framework. ''Computers & Geosciences'', '''90 part B''', 152-161. https://doi.org/10.1016/j.cageo.2016.03.005.
* Peckham, S.D., Kelbert, A., Hill, M.C., and Hutton, E.W.H., 2016. Towards uncertainty quantification and parameter estimation for Earth system models in a component-based modeling framework. ''Computers & Geosciences'', '''90 part B''', 152-161. https://doi.org/10.1016/j.cageo.2016.03.005.
Line 25: Line 53:
===All CSDMS & Landlab papers===
===All CSDMS & Landlab papers===
[[Cite_CSDMS_Landlab_all_papers | All papers involving CSDMS and Landlab]]
[[Cite_CSDMS_Landlab_all_papers | All papers involving CSDMS and Landlab]]
===ESPIn===
* Piper, M., Campforts, B., Overeem, I., Gasparini, N., and Arthurs, L., 2020. Earth Surface Processes Institute (ESPIn) Course Material (Version 1.0). Zenodo. http://doi.org/10.5281/zenodo.4000979.

Latest revision as of 14:11, 1 September 2023

Cite CSDMS

Below you will find references to cite when referring to or making use of CSDMS tools.

CSDMS

  • Hutton, E.W.H., Piper, M.D., Peckham, S.D., Overeem, I., Kettner, A.J., and Syvitski, J.P.M., 2014. Building Sustainable Software - The CSDMS Approach. arXiv:1407.4106. https://arxiv.org/abs/1407.4106.
  • Syvitski, J.P.M., Hutton, E.W.H., Piper, M.D., Overeem, I., Kettner, A.J., and Peckham, S.D., 2014. Plug and play component modeling - the CSDMS2.0 approach. In: International Environmental Modelling and Software Society (IEMSs). D.P. Ames, N.W.T. Quinn, A.E. Rizzoli (Eds.), 7th Intl. Congress on Env. Modeling and Software, San Diego, California, USA. https://scholarsarchive.byu.edu/iemssconference/2014/Stream-B/4/.
  • Overeem, I., Berlin, M.M., and Syvitski, J.P.M., 2013. Strategies for integrated modeling: The community surface dynamics modeling system example. Environmental Modelling & Software, 39, 314-321. https://doi.org/10.1016/j.envsoft.2012.01.012
  • Campbell, K., Overeem, I., Berlin, M., 2013. Taking it to the Streets: the Case for Modeling in the Geosciences Undergraduate Curriculum. Computers and Geosciences, 53, 123-128. https://doi.org/10.1016/j.cageo.2011.09.006

BMI

  • den Haan, R.J., van der Voort, M.C., Baart, F., Berends, K.D., van den Berg, M.C., Straatsma, M.W., Geenen, A.J.P., and Hulscher, S.J.M.H., 2020. The Virtual River Game: Gaming using models to collaboratively explore river management complexity. Journal of Environmental Modelling and Software. doi:10.1016/j.envsoft.2020.104855
  • Hoch, J.M., Eilander, D., Ikeuchi, H., Baart, F., and Winsemius, H.C., 2019. Integrating large-scale hydrology and hydrodynamics for nested flood hazard modelling from the mountains to the coast. Natural Hazards and Earth System Sciences Discussions. doi:10.5194/nhess-2019-75
  • Hutton, E.W.H., Piper, M.D., and Tucker, G.E., 2020. The Basic Model Interface 2.0: A standard interface for coupling numerical models in the geosciences. JOSS. https://doi.org/10.21105/joss.02317.
  • Iwanaga, T., Partington, D., Ticehurst, J., Croke, B.F.W., and Jakeman, A.J., 2020. A socio-environmental model for exploring sustainable water management futures: Participatory and collaborative modelling in the Lower Campaspe catchment. Journal of Hydrology: Regional Studies. doi:10.1016/j.ejrh.2020.100669
  • Wang, K., Jafarov, E., and Overeem, I., 2020. Sensitivity evaluation of the Kudryavtsev permafrost model. Journal of Science of the Total Environment. doi:10.1016/j.scitotenv.2020.137538
  • Peckham, S.D., Hutton, E.W.H., and Norris, B., 2013. A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Computers & Geosciences, 53, 3-12. https://doi.org/10.1016/j.cageo.2012.04.002.

PyMT

  • Ratliff, K.M., Hutton, E.H.W., and Murray, A.B., 2021. Modeling long-term delta dynamics reveals persistent geometric river avulsion locations, Earth and Planetary Science Letters, 559, doi:10.1016/j.epsl.2021.116786.
  • Ratliff, K.M., Hutton, E.H.W., and Murray, A.B., 2018. Exploring Wave and Seal-Level Rise Effects on Delta Morphodynamics with a Coupled River-Ocean Model. JGR Earth Surface. doi:10.1029/2018JF004757
  • Wang, K., Jafarov, E., and Overeem, I., 2020. Sensitivity evaluation of the Kudryavtsev permafrost model. Journal of Science of the Total Environment, June 2020. doi:10.1016/j.scitotenv.2020.137538

Landlab

  • Barnhart, K.R., Hutton, E.W.H., Tucker, G.E., Gasparini, N.M., Istanbulluoglu, E., Hobley, D.E.J., Lyons⁠, N.J., Mouchene, M., Nudurupati, S.S., Adams, J.M., and Bandaragoda, C. (2020) Short communication: Landlab 2.0: A software package for Earth surface dynamics. Earth Surface Dynamics, 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020.
  • Hobley, D. E., Adams, J. M., Nudurupati, S. S., Hutton, E. W., Gasparini, N. M., Istanbulluoglu, E., & Tucker, G. E. (2017) Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surface Dynamics. https://doi.org/10.5194/esurf-5-21-2017.

Landlab Components, Tools, and Packages

  • Adams, J.M., Gasparini, N.M., Hobley, D.E.J., Tucker, G.E., Hutton, E.W.H., Nudurupati, S.S., and Istanbulluoglu, E. The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds. Geoscientific Model Development, 2017, doi:10.5194/gmd-10-1645-2017
  • Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E. (2019) Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution. Geosci. Model Dev., v. 12, p. 1267-1297, doi:10.5194/gmd-12-1267-2019.
  • Barnhart, K. R., Hutton, E. W., Gasparini, N. M., & Tucker, G. E. (2018). Lithology: A Landlab submodule for spatially variable rock properties. J. Open Source Software, 3(30), 979, doi:10.21105/joss.00979
  • Barnhart, K.R., Hutton, E., and Tucker, G.E. (2019) umami: a Python package for Earth surface dynamics objective function construction, Journal of Open Source Software, 4(42), 1776, doi:10.21105/joss.01776.
  • Litwin, D.G., Tucker, G.E., Barnhart, K.R., and Harman, C.J. (2020) GroundwaterDupuitPercolator: A Landlab component for groundwater flow, Journal of Open Source Software, 5(46), 1935, https://doi.org/10.21105/joss.01935.
  • Lyons, N.J., Albert, J.S., and Gasparini, N.M. (2020). SpeciesEvolver: A Landlab component to evolve life in simulated landscapes. Journal of Open Source Software, 5(46), 2066, https://doi.org/10.21105/joss.02066.
  • Pfeiffer, A.M., Barnhart, K.R., Czuba, J.A., and Hutton, E.W.H. (2020). NetworkSedimentTransporter: A Landlab component for bed material transport through river networks. Journal of Open Source Software, 5(53), 2341, https://doi.org/10.21105/joss.02341.
  • Shobe, C.M., Tucker, G.E., and Barnhart, K.R. The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution. Geoscientific Model Development, 2017, doi:10.5194/gmd-10-4577-2017
  • Tucker, G.E., Hobley, D.E.J., Hutton, E., Gasparini, N.M., Istanbulluoglu, E., Adams, J.M., and Nudurupati, S.S. (2016) CellLab-CTS 2015: Continuous-time stochastic cellular automaton modeling using Landlab. Geoscientific Model Development., v. 9, p. 823-839, https://doi.org/10.5194/gmd-9-823-2016

CSDMS Efforts on integration of deep learning in models

  • Chen, M., Qian, Z., Boers, N., Jakeman, A.J., Kettner, A.J., Brandt, M., Kwan, M.-P., Batty, M., Li, W., Zhu, R., Luo W., Ames, D.P., Barton, C.M., Cuddy, S.M., Koirala, S., Zhan, F., Ratti, C., Liu, J., Zhong, T., Liu, J., Wen, Y., Yue, S., Zhu, Z., Zhang, Z., Sun, Z., Lin, J., Ma, Z., He, Y., Xu, K., Zhang, C., Lin, H., and Lü, G., 2023. Iterative integration of deep learning in hybrid Earth Surface System Modeling. Nature Reviews - Earth & Environment, 4, 568–581. https://doi.org/10.1038/s43017-023-00452-7.

Standard Names

  • Peckham, S.D., 2014. The CSDMS Standard Names: Cross-Domain Naming Conventions for Describing Process Models, Data Sets and Their Associated Variables. In: International Environmental Modelling and Software Society (IEMSs). D.P. Ames, N.W.T. Quinn, A.E. Rizzoli (Eds.), 7th Intl. Congress on Env. Modeling and Software, San Diego, California, USA. https://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/12/

CSDMS Efforts on Model Uncertainty

  • Barnhart, K.R., Tucker, G.E., Doty, S.G., Glade, R. C., Shobe, C.M., Rossi, M., and Hill, M.C. (2020) Projections of landscape evolution on a 10,000 year timescale with assessment and partitioning of uncertainty sources. Journal of Geophysical Research: Earth Surface, 125, 7, https://doi.org/ 10.1029/2020JF005795.
  • Kettner, A.J., and Syvitski, J.P.M., 2016. Uncertainty and Sensitivity in Surface Dynamics Modeling. Computers & Geosciences, 90 part B, 1-5. https://doi.org/10.1016/j.cageo.2016.03.003.
  • Peckham, S.D., Kelbert, A., Hill, M.C., and Hutton, E.W.H., 2016. Towards uncertainty quantification and parameter estimation for Earth system models in a component-based modeling framework. Computers & Geosciences, 90 part B, 152-161. https://doi.org/10.1016/j.cageo.2016.03.005.

Coupling data with models

  • Peckham, S.D., and Goodall, J.L., 2013. Driving plug-and-play models with data from web services: A demonstration of interoperability between CSDMS and CUASHI-HIS. Computers & Geosciences, 53, 154-161. https://doi.org/10.1016/j.cageo.2012.04.019.

All CSDMS & Landlab papers

All papers involving CSDMS and Landlab

ESPIn

  • Piper, M., Campforts, B., Overeem, I., Gasparini, N., and Arthurs, L., 2020. Earth Surface Processes Institute (ESPIn) Course Material (Version 1.0). Zenodo. http://doi.org/10.5281/zenodo.4000979.