Model help:DeltaNorm: Difference between revisions

From CSDMS
mNo edit summary
m Text replacement - "http://csdms.colorado.edu/wiki/" to "https://csdms.colorado.edu/wiki/"
 
(10 intermediate revisions by 2 users not shown)
Line 3: Line 3:
1) Log in to the wiki
1) Log in to the wiki
2) Create a new page for each model, by using the following URL:
2) Create a new page for each model, by using the following URL:
   * http://csdms.colorado.edu/wiki/Model help:<modelname>
   * https://csdms.colorado.edu/wiki/Model help:<modelname>
   * Replace <modelname> with the name of a model
   * Replace <modelname> with the name of a model
3) Than follow the link "edit this page"
3) Than follow the link "edit this page"
Line 169: Line 169:


==Main equations==
==Main equations==
<span class="remove_this_tag">A list of the key equations. HTML format is supported; latex format will be supported in the future</span>
* Water surface elevation
::::{|
|width=800px|<math>  \eta = \eta_{f}[s_{s} \left (t\right ), t] - S_{a}[x - s_{s}\left ( t \right )] </math>
|width=50p=x align="right"|(1)
|}
* Exner equation for shock condition
::::{|
|width=800px|<math> \left ( 1 - \lambda_{p} \right ) \int _{s_{s}\left (t\right )} ^ \left ( s_{b} \left (t\right ) \right ){\frac{\partial \eta}{\partial t}} d x = I_{f} \{q_{t}[s_{s}\left (t \right ), t] - q_{t} [s_{b}\left (t\right ),t] \} </math>
|width=50p=x align="right"|(2)
|}
::::{|
|width=800px|<math> \dot{s_{s}} = {\frac{1}{\left (S_{a} - S_{s} \right )}}[{\frac{I_{f} q_{ts}}{\left ( 1 - \lambda_{p}\right ) \left (s_{b} - s_{s} \right )}} - {\frac{\partial \eta _{f}}{\partial t}}|_{s_{s}}] </math>
|width=50p=x align="right"|(3)
|}
::::{|
|width=800px|<math> \left (S_{a} - S_{b} \right ) \dot{s}_{b} = \left (S_{a} - S_{s}\right ) \dot{s}_{s} + {\frac{\partial \eta _{f}}{\partial t}}|_{s_{s}} </math>
|width=50p=x align="right"|(4)
|}
* Moving boundary coordinate
::::{|
|width=800px|<math> \hat{x} = {\frac{x}{S_{s}\left (t\right )}} </math>
|width=50p=x align="right"|(5)
|}
::::{|
|width=800px|<math> \hat{t} = t </math>
|width=50p=x align="right"|(6)
|}
* Exner equation for moving-boundary coordinate
::::{|
|width=800px|<math> \left ( 1 - \lambda_{p} \right ) [\left ({\frac{\partial \eta_{f}}{\partial \hat{t}}} - {\frac{\dot{s}_{s}}{s_{s}}} \hat{x} {\frac{\partial \eta_{f}}{\partial \dot{x}}}\right )] = - {\frac{1}{s_{s}}} I_{f} {\frac{\partial q_{t}}{\partial \dot{x}}} </math>
|width=50p=x align="right"|(7)
|}
* Shock condition for moving-boundary coordinate
::::{|
|width=800px|<math> \left (s_{b} - s_{s} \right )[{\frac{\partial \eta_{f}}{\partial \hat{t}}}|_{\hat{x} = 1} + S_{a} \dot{s}_{s}] = {\frac{I_{f} q_{t} \left (1, \hat{t}\right )}{\left ( 1 - \lambda_{p}\right )}} </math>
|width=50p=x align="right"|(8)
|}
* Continuity condition for moving-boundary coordinate
::::{|
|width=800px|<math> \dot{s}_{b} = {\frac{S_{a} \dot{s}_{s} + {\frac{\partial \eta _{f}}{\partial \hat{t}}}|_{\hat{x} = 1}}{\left ( S_{a} - S_{b}\right )}} </math>
|width=50p=x align="right"|(9)
|}
* Sediment transport relation
1) Total bed material transport
::::{|
|width=800px|<math> q_{t} = \sqrt{R g D} D q_{t} ^* </math>
|width=50p=x align="right"|(10)
|}
::::{|
|width=800px|<math> q_{t}^* = \alpha_{t}[\tau^* - \tau_{c}^*]^ \left (n_{t}\right ) </math>
|width=50p=x align="right"|(11)
|}
* Normal flow approximation
::::{|
|width=800px|<math> \tau^* = \left ( {\frac{C_{f} q_{w}^2}{g}}\right )^ \left ({\frac{1}{3}}\right ) {\frac{S^ \left ({\frac{2}{3}}\right )}{R D}} </math>
|width=50p=x align="right"|(12)
|}
::::{|
|width=800px|<math> C_{f} = Cz^ \left (-2\right ) </math>
|width=50p=x align="right"|(13)
|}
::::{|
|width=800px|<math> S = - {\frac{1}{s_{s}}} {\frac{\partial \eta _{f}}{\partial \dot{x}}} </math>
|width=50p=x align="right"|(14)
|}
* Boundary conditions
::::{|
|width=800px|<math> s_{s} \left ( \hat{t} + \Delta \hat{t} \right ) = s_{s} \left (\hat{t}\right ) + \dot{s}_{s} \Delta \hat{t} </math>
|width=50p=x align="right"|(15)
|}
::::{|
|width=800px|<math> s_{b} \left ( \hat{t} + \Delta \hat{t} \right ) = s_{b} \left (\hat{t}\right ) + \dot{s}_{b} \Delta \hat{t} </math>
|width=50p=x align="right"|(16)
|}
::::{|
|width=800px|<math> \eta_{b} \equiv \eta [S_{b} \left (\hat{t} \right ), \hat{t}] = \eta_{d} - S_{s} \left ( s_{b} - s_{s}\right ) </math>
|width=50p=x align="right"|(17)
|}
* Calculation of derivatives
::::{|
|width=800px|<math> {\frac{\partial \eta}{\partial \hat{x}}}|_{i} = \left\{\begin{matrix} {\frac{\eta_{i+1} - \eta_{i}}{\Delta \hat{x}}} & i = 1 \\ {\frac{\eta_{i+1} - \eta_{i-1}}{2 \Delta \hat{x}}} & i = 2...M \\ {\frac{\eta_{i} - \eta_{i-1}}{\Delta \hat{x}}} & i = M+1 \end{matrix}\right. </math>
|width=50p=x align="right"|(18)
|}
::::{|
|width=800px|<math> {\frac{\partial q_{t}}{\partial \hat{x}}}|_{i} = \left\{\begin{matrix} {\frac{q_{t,j+1} - q_{tf}}{2 \Delta \hat{x}}} & i = 1 \\ {\frac{q_{t,i} - q_{t,i-1}}{2 \Delta \hat{x}}} & 2 <= i <= M \end{matrix}\right.  </math>
|width=50p=x align="right"|(19)
|}


<div class="NavFrame collapsed" style="text-align:left">
<div class="NavFrame collapsed" style="text-align:left">
Line 179: Line 265:
| q<sub>w</sub>
| q<sub>w</sub>
| water discharge / width
| water discharge / width
| m<sup>2</sup> / s
| L<sup>2</sup> / T
|-
| I<sub>f</sub>
| intermittency
| -
|-
|-
| C<sub>z</sub>
| C<sub>z</sub>
| dimensionless Chezy resistance coefficient
| dimensionless Chezy resistance coefficient
| -
| -
|-
| D
| grain size of sediment
| mm
|-
|-
| R
| R
Line 199: Line 277:
| λ<sub>p</sub>
| λ<sub>p</sub>
| bed porosity
| bed porosity
| -
|-
| q<sub>tf</sub>
| sediment input rate
| -
|-
| a<sub>t</sub>
| coeff in total bed material load relation
| -
| -
|-
|-
Line 212: Line 282:
| exponent in load relation
| exponent in load relation
| -
| -
|-
| τ<sub>sc</sub> <sup>*</sup>
| critical Shields stress in load relation
|
|-
|-
| η<sub>d</sub>
| η<sub>d</sub>
| water surface elevation of the lake
| water surface elevation of the lake
| m
| L
|-
| η<sub>bl</sub>
| initial elevation of top of the foreset
| m
|-
| η<sub>bl</sub>
| initial elevation of bottom of the foreset
| m
|-
|-
| S<sub>fl</sub>
| S<sub>fl</sub>
| initial fluvial bed slope
| initial fluvial bed slope
| -
|-
| S<sub>b</sub>
| subaqueous basement slope
| -
| -
|-
|-
| s<sub>fl</sub>
| s<sub>fl</sub>
| initial length of fluvial zone
| initial length of fluvial zone
| m
| L
|-   
|-   
| S<sub>a</sub>
| S<sub>a</sub>
Line 245: Line 299:
| -
| -
|-   
|-   
| Δ<sub>t</sub>
| Δt
| time step
| time step
| days
| T
|-
|-
| M
| M
Line 263: Line 317:
| x
| x
| downstream coordinate
| downstream coordinate
| m
| L
|-
|-
| η
| η
| bed surface elevation
| bed surface elevation
| m
| L
|-
| Sl
| bed slope
| -
|-
|-
| q<sub>b</sub>
| q<sub>b</sub>
| volume bedload transport per unit width
| volume bedload transport per unit width
| m<sup>2</sup> / s
| L<sup>2</sup> / T
|-
|-
| H
| H
| water depth
| water depth
| m
| L
|-
|-
| τ
| τ
| shear stress
| shear stress
| N / m<sup>2</sup>
| -
|-
|-
| sU
| s<sub>U</sub>
| location of the upstream coordinate
| location of the upstream coordinate
| m
| L
|-
|-
| sbb
| s<sub>bb</sub>
| reach of the alluvium bottom
| reach of the alluvium bottom
| m
| L
|-
|-
| sss
| s<sub>ss</sub>
| reach of the alluvium top
| reach of the alluvium top
| m
| L
|-
|-
| etaup
| η<sub>up</sub>
| upstream bed surface elevation
| upstream bed surface elevation
| m
| L
|-
|-
| etatop
| η<sub>top</sub>
| bed surface elevation of the top of the forest
| bed surface elevation of the top of the forest
| m
| L
|-
|-
| etabot
| η<sub>bot</sub>
| bed surface elevation of the bottom of the forest
| bed surface elevation of the bottom of the forest
| m
| L
|-
|-
| q
| q
| flood discharge
| flood discharge
| m<sup>2</sup> / s
| L<sup>2</sup> / T
|-
|-
| I
| I<sub>f</sub>
| flood intermittency
| flood intermittency
| -
| -
Line 319: Line 369:
| Q
| Q
| upstream bed material sediment feed rate during floods
| upstream bed material sediment feed rate during floods
| m<sup>2</sup> / s
| L<sup>2</sup> / T
|-
|-
| D
| D
| grain diameter
| grain diameter
| mm
| L
|-
| C
| coefficient in the Chezy rlation, C<sub>f</sub>
| -
|-
| n
| exponent in the load relation
| -
|-
| T
| critical shields stress in load relation
| -
|-
|-
| E
| E
| elevation of the top of the forest
| elevation of the top of the forest
| m
| L
|-
|-
| e
| e
| initial elevation of the bottom of the forest
| initial elevation of the bottom of the forest
| m
| L
|-
|-
| f
| f
Line 355: Line 393:
| s
| s
| initial length of the fluvial zone
| initial length of the fluvial zone
| m
| L
|-
| S
| slope of the forest face, S<sub>a</sub>
| -
|-
| R
| submerged specific gravity
| -
|-
|-
| L
| L
Line 379: Line 409:
| r
| r
| coefficient in the Manning-Strickler relation
| coefficient in the Manning-Strickler relation
| -
|-
| M
| number of fluvial nodes
| -
| -
|-
|-
| t
| t
| time step
| time step
| days
| T
|-
|-
| p
| p
Line 396: Line 422:
| number of iterations per print
| number of iterations per print
| -
| -
|-
| η<sub>s</sub>(t)
| bed elevation at the topset-foreset break
| L
|-
| η<sub>b</sub>(t)
| bed elevation at the foreset-bottomset break
| L
|-
| s<sub>s</sub>(t)
| coordinate corresponds to the topset-foreset break
| L
|-
| s<sub>b</sub>(t)
| coordinate corresponds to  the foreset-bottomset break
| L
|-
| q<sub>t</sub>
| volume total bed material transport rate per unit
width
| L<sup>2</sup> / T
|-
| q<sub>tf</sub>
| upstream sediment feed rate
| L<sup>2</sup> / T
|-
| η<sub>f</sub>(x,t)
| bed elevation on the fluvial region
| L
|-
| dot{s}<sub>s</sub>
| prograding rate of the delta at the topset-foreset break
| L / T
|-
| dot{s}<sub>b</sub>
| prograding rate of the delta at the foreset-bottomset break
| L / T
|-
| S<sub>s</sub>
| bed slope of the fluvial region at the topset-foreset break
| -
|-
| x^
| dimensionless downstream coordinate
| -
|-
| t^
| dimensionless time
| -
|-
| q<sub>t</sub> <sup>*</sup>
| Einstein number for total bed material
| -
|-
| α<sub>t</sub>
| coefficient in generic relation for total bed material load
| -
|-
| τ<sup>*</sup>
| Shields number
| -
|-
| τ<sub>c</sub> <sup>*</sup>
| critical Shields number at the threshold of motion
| -
|-
| C<sub>f</sub>
| bed friction coefficient
| -
|-
| S
| down-channel bed slope
| -
|-
| g
| acceleration due to gravity
| L / T<sup>2</sup>
|-
|-
|}
|}
Line 404: Line 507:
This model is used to  calculate for 1D Subaerial Fluvial Fan-Delta with Channel of Constant Width. This model assumes a narrowly channelized 1D fan-delta prograding into standing water. The model uses a single grain size D, a generic total bed material load relation and a constant bed resistance coefficient. The channel is assumed to have a constant width. Water and sediment discharge are specified per unit width. The fan builds outward by forming a prograding delta front with an assigned foreset slope. The code employs the normal flow approximation rather than a full backwater calculation.  
This model is used to  calculate for 1D Subaerial Fluvial Fan-Delta with Channel of Constant Width. This model assumes a narrowly channelized 1D fan-delta prograding into standing water. The model uses a single grain size D, a generic total bed material load relation and a constant bed resistance coefficient. The channel is assumed to have a constant width. Water and sediment discharge are specified per unit width. The fan builds outward by forming a prograding delta front with an assigned foreset slope. The code employs the normal flow approximation rather than a full backwater calculation.  


In the normal flow formulation, for any given time t = t^:
a) Specify the downstream bed elevation η<sub>d</sub>
b) Calculate the bed slope S everywhere, and use this to find H everywhere.
c) Use this to evaluate q<sub>t</sub> everywhere, including q<sub>ts</sub> at x^ = 1.
d) Implement the shock condition to find dot{s}<sub>s</sub>. This shock condition requires knowledge of the term d η<sub>f</sub> / d t^ |x^ = 1 = d η<sub>d</sub> / d t^, which can be directly computed in terms of the imposed function η<sub>d</sub> \left (t^\right ).
e) Solve Exner everywhere except the last node (where bed elevation is specified) to find new bed elevations at time Δt^ later.
f) Use continuity condition to find dot{s}<sub>b</sub>.
* Note on model running
* Note on model running
This model assumes a uniform grain size.
This model assumes a uniform grain size.
Line 415: Line 532:


<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
<span class="remove_this_tag">Follow the next steps to include images / movies of simulations:</span>
* <span class="remove_this_tag">Upload file: http://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Upload file: https://csdms.colorado.edu/wiki/Special:Upload</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>
* <span class="remove_this_tag">Create link to the file on your page: <nowiki>[[Image:<file name>]]</nowiki>.</span>


Line 424: Line 541:


==References==
==References==
<span class="remove_this_tag">Key papers</span>
* Grover, N.C., and Howard, C.L., 1937, The passage of turbid water through Lake Mead, Transactions, American Society of Civil Engineers, 103, 720-732.
 
* Kostic, S. and Parker, G., 2003a, Progradational sand-mud deltas in lakes and reservoirs.  Part 1.  Theory and numerical modeling, Journal of Hydraulic Research, 41(2), 127-140.
 
* Kostic, S. and Parker, G., 2003b, Progradational sand-mud deltas in lakes and reservoirs.  Part 2.  Experiment and numerical simulation, Journal of Hydraulic Research, 41(2), 141-152
 
* Swenson, J. B., Voller, V. R., Paola, C., Parker G. and Marr J., 2000, Fluvio-deltaic sedimentation: a generalized Stefan problem, European Journal of Applied Math., 11, 433-452.


==Links==
==Links==

Latest revision as of 17:17, 19 February 2018

The CSDMS Help System
The CSDMS Help System

DeltaNorm

This is a calculator for evolution of long profile of a river ending in a 1D migrating delta, using the normal flow approximation.

Model introduction

This program calculates the bed surface evolution for a narrowly channelized 1D fan-delta prograding into standing water, as well as calculating the initial and final amounts of sediment in the system.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
Chezy Or Manning, Chezy-1 or Manning-2
Parameter Description Unit
Flood discharge (q) m2 / s
Intermittency (I) flood intermittency -
upstream bed material sediment feed rate during flood (Q) m2 / m
Grain size of bed material (D) mm
Chezy resistance coefficient (C) cofficient in the Chezy relation -
Exponent in load relation (n) -
Critical Shields stress in load relation (T) -
Elevation of top of forest (E) m
Initial elevation of forest bottom (e) m
Initial fluvial bed slope (f) -
Subaqueous basement slope (b) -
initial length of fluvial zone (s) m
Slope of forest face (Sa) -
Submerged specific gravity of sediment (R) -
Bed porosity (L) -
Manning-Strickler coefficient (k) coefficient in the Manning-Strickler relation -
Manning-Strickler coefficient (r) coefficient in the Manning-Strickler relation -
Coefficient in total bed material relation (a) -
Number of fluvial nodes (M) -
Time step (t) days
Number of printouts after initial one -
Iterations per each printout -
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Water surface elevation
<math> \eta = \eta_{f}[s_{s} \left (t\right ), t] - S_{a}[x - s_{s}\left ( t \right )] </math> (1)
  • Exner equation for shock condition
<math> \left ( 1 - \lambda_{p} \right ) \int _{s_{s}\left (t\right )} ^ \left ( s_{b} \left (t\right ) \right ){\frac{\partial \eta}{\partial t}} d x = I_{f} \{q_{t}[s_{s}\left (t \right ), t] - q_{t} [s_{b}\left (t\right ),t] \} </math> (2)
<math> \dot{s_{s}} = {\frac{1}{\left (S_{a} - S_{s} \right )}}[{\frac{I_{f} q_{ts}}{\left ( 1 - \lambda_{p}\right ) \left (s_{b} - s_{s} \right )}} - {\frac{\partial \eta _{f}}{\partial t}}|_{s_{s}}] </math> (3)
<math> \left (S_{a} - S_{b} \right ) \dot{s}_{b} = \left (S_{a} - S_{s}\right ) \dot{s}_{s} + {\frac{\partial \eta _{f}}{\partial t}}|_{s_{s}} </math> (4)
  • Moving boundary coordinate
<math> \hat{x} = {\frac{x}{S_{s}\left (t\right )}} </math> (5)
<math> \hat{t} = t </math> (6)
  • Exner equation for moving-boundary coordinate
<math> \left ( 1 - \lambda_{p} \right ) [\left ({\frac{\partial \eta_{f}}{\partial \hat{t}}} - {\frac{\dot{s}_{s}}{s_{s}}} \hat{x} {\frac{\partial \eta_{f}}{\partial \dot{x}}}\right )] = - {\frac{1}{s_{s}}} I_{f} {\frac{\partial q_{t}}{\partial \dot{x}}} </math> (7)
  • Shock condition for moving-boundary coordinate
<math> \left (s_{b} - s_{s} \right )[{\frac{\partial \eta_{f}}{\partial \hat{t}}}|_{\hat{x} = 1} + S_{a} \dot{s}_{s}] = {\frac{I_{f} q_{t} \left (1, \hat{t}\right )}{\left ( 1 - \lambda_{p}\right )}} </math> (8)
  • Continuity condition for moving-boundary coordinate
<math> \dot{s}_{b} = {\frac{S_{a} \dot{s}_{s} + {\frac{\partial \eta _{f}}{\partial \hat{t}}}|_{\hat{x} = 1}}{\left ( S_{a} - S_{b}\right )}} </math> (9)
  • Sediment transport relation

1) Total bed material transport

<math> q_{t} = \sqrt{R g D} D q_{t} ^* </math> (10)
<math> q_{t}^* = \alpha_{t}[\tau^* - \tau_{c}^*]^ \left (n_{t}\right ) </math> (11)
  • Normal flow approximation
<math> \tau^* = \left ( {\frac{C_{f} q_{w}^2}{g}}\right )^ \left ({\frac{1}{3}}\right ) {\frac{S^ \left ({\frac{2}{3}}\right )}{R D}} </math> (12)
<math> C_{f} = Cz^ \left (-2\right ) </math> (13)
<math> S = - {\frac{1}{s_{s}}} {\frac{\partial \eta _{f}}{\partial \dot{x}}} </math> (14)
  • Boundary conditions
<math> s_{s} \left ( \hat{t} + \Delta \hat{t} \right ) = s_{s} \left (\hat{t}\right ) + \dot{s}_{s} \Delta \hat{t} </math> (15)
<math> s_{b} \left ( \hat{t} + \Delta \hat{t} \right ) = s_{b} \left (\hat{t}\right ) + \dot{s}_{b} \Delta \hat{t} </math> (16)
<math> \eta_{b} \equiv \eta [S_{b} \left (\hat{t} \right ), \hat{t}] = \eta_{d} - S_{s} \left ( s_{b} - s_{s}\right ) </math> (17)
  • Calculation of derivatives
<math> {\frac{\partial \eta}{\partial \hat{x}}}|_{i} = \left\{\begin{matrix} {\frac{\eta_{i+1} - \eta_{i}}{\Delta \hat{x}}} & i = 1 \\ {\frac{\eta_{i+1} - \eta_{i-1}}{2 \Delta \hat{x}}} & i = 2...M \\ {\frac{\eta_{i} - \eta_{i-1}}{\Delta \hat{x}}} & i = M+1 \end{matrix}\right. </math> (18)
<math> {\frac{\partial q_{t}}{\partial \hat{x}}}|_{i} = \left\{\begin{matrix} {\frac{q_{t,j+1} - q_{tf}}{2 \Delta \hat{x}}} & i = 1 \\ {\frac{q_{t,i} - q_{t,i-1}}{2 \Delta \hat{x}}} & 2 <= i <= M \end{matrix}\right. </math> (19)

Notes

This model is used to calculate for 1D Subaerial Fluvial Fan-Delta with Channel of Constant Width. This model assumes a narrowly channelized 1D fan-delta prograding into standing water. The model uses a single grain size D, a generic total bed material load relation and a constant bed resistance coefficient. The channel is assumed to have a constant width. Water and sediment discharge are specified per unit width. The fan builds outward by forming a prograding delta front with an assigned foreset slope. The code employs the normal flow approximation rather than a full backwater calculation.

In the normal flow formulation, for any given time t = t^:

a) Specify the downstream bed elevation ηd

b) Calculate the bed slope S everywhere, and use this to find H everywhere.

c) Use this to evaluate qt everywhere, including qts at x^ = 1.

d) Implement the shock condition to find dot{s}s. This shock condition requires knowledge of the term d ηf / d t^ |x^ = 1 = d ηd / d t^, which can be directly computed in terms of the imposed function ηd \left (t^\right ).

e) Solve Exner everywhere except the last node (where bed elevation is specified) to find new bed elevations at time Δt^ later.

f) Use continuity condition to find dot{s}b.

  • Note on model running

This model assumes a uniform grain size.

The fan builds outward by forming a prograding delta front with an assigned foreset slope.

The water depth is calculated using a Chézy formulation, when only the Chézy coefficient is present in the inputted text file, and with the Manning-Strickler formulation, when only the roughness height, kc, value is present. When both are present the program will ask the user which formulation they would like to use.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Grover, N.C., and Howard, C.L., 1937, The passage of turbid water through Lake Mead, Transactions, American Society of Civil Engineers, 103, 720-732.
  • Kostic, S. and Parker, G., 2003a, Progradational sand-mud deltas in lakes and reservoirs. Part 1. Theory and numerical modeling, Journal of Hydraulic Research, 41(2), 127-140.
  • Kostic, S. and Parker, G., 2003b, Progradational sand-mud deltas in lakes and reservoirs. Part 2. Experiment and numerical simulation, Journal of Hydraulic Research, 41(2), 141-152
  • Swenson, J. B., Voller, V. R., Paola, C., Parker G. and Marr J., 2000, Fluvio-deltaic sedimentation: a generalized Stefan problem, European Journal of Applied Math., 11, 433-452.

Links