Property:Key references dataset

From CSDMS

This is a property of type Text.

Showing 20 pages using this property.
C
Additional data access via NOAA Digital Coast Data Access Viewer https://chs.coast.noaa.gov/htdata/raster2/elevation/NCEI_third_Topobathy_2014_8580/ https://chs.coast.noaa.gov/htdata/raster2/elevation/NCEI_ninth_Topobathy_2014_8483/ Metadata: https://data.noaa.gov/waf/NOAA/NESDIS/NGDC/MGG/DEM/iso/  +
N
Allen, G. H., Pavelsky T.M., (2015), Patterns of river width and surface area newly revealed by the satellite-derived North American River Width data set. Geophysical Research Letters. doi: 10.1002/2014GL062764  +
E
Amante, C. and B. W. Eakins, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, March 2009.  +
G
Amatulli, G., McInerney, D., Sethi, T. et al. Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Sci Data 7, 162 (2020). https://doi.org/10.1038/s41597-020-0479-6  +, Amatulli, G., McInerney, D., Sethi, T., Strobl, P., Domisch, S. (2020). Geomorpho90m - Global High-Resolution Geomorphometry Layers. Distributed by OpenTopography. https://doi.org/10.5069/G91R6NPX. Accessed: 2020-06-12  +
S
Cavalieri, D., C. Parkinson, P. Gloersen, and H. J. Zwally. 1996, updated 2008. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, "list dates of temporal coverage used". Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.  +, Meier, W., F. Fetterer, K. Knowles, M. Savoie, M. J. Brodzik. 2006, updated quarterly. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, "list dates of temporal coverage used". Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.  +
D
Cite as: Jenkins, C.J. & Gan, T. 2024. Gulf of Mexico Seafloor Substrates. INSTAAR, University of Colorado, Boulder CO USA. (URL: "https://csdms.colorado.edu/wiki/Data:DBSEABED"; Last edit 27 June 2024)  +
O
Cite: 'Reproduced with the permission of the OneGeology Secretariat & registered Participants. All rights Reserved'  +
M
Cohen,S., A. J. Kettner, and J.P.M. Syvitski (2014), Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity, Global and Planetary Change, 115: 44-58, http://dx.doi.org/10.1016/j.gloplacha.2014.01.011.  +, Cohen, S., A. J. Kettner, J.P.M. Syvitski, and B.M. Fekete (2013), WBMsed, a distributed global-scale riverine sediment flux model: Model description and validation, Computers & Geosciences, 53: 80–93. doi: 10.1016/j.cageo.2011.08.011  +
G
D. Giardini, G. Grünthal, K. M. Shedlock, P. Zhang, 1999. The GSHAP Global Seismic Hazard Map. Annals of Geophysics, 42, 1225-1230  +
S
Divins, D.L., NGDC Total Sediment Thickness of the World's Oceans & Marginal Seas, Retrieved date goes here, http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html  +
T
Egbert, G.D., and S.Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19(2), 183-204.  +
H
FAO/IIASA/ISRIC/ISSCAS/JRC, 2009. Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria.  +
G
GLC-SHARE, Global Land Cover SHARE. Database Beta-Release Version 1.0 - 2014, by John Latham, Renato Cumani, Ilaria Rosati and Mario Bloise. FAO document.  +
GLOBE Task Team and others (Hastings, David A., Paula K. Dunbar, Gerald M. Elphingstone, Mark Bootz, Hiroshi Murakami, Hiroshi Maruyama, Hiroshi Masaharu, Peter Holland, John Payne, Nevin A. Bryant, Thomas L. Logan, J.-P. Muller, Gunter Schreier, and John S. MacDonald), eds., 1999. The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80305-3328, U.S.A. Digital data base on the World Wide Web (URL: http://www.ngdc.noaa.gov/mgg/topo/globe.html) and CD-ROMs.  +
N
Gesch, D., Evans, G., Mauck, J., Hutchinson, J., Carswell Jr., W.J., 2009, The National Map—Elevation: U.S. Geological Survey Fact Sheet 2009-3053, 4 p.  +
G
Haney, N., Cohen, S. (2015), Predicting 21st century global agricultural land use with a spatially and temporally explicit regression-based model. Applied Geography, 62: 366-376. doi:10.1016/j.apgeog.2015.05.010  +
Hartmann, J., Moosdorf, N., 2012. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, 13. DOI: 10.1029/2012GC004370  +, https://www.clisap.de/fileadmin/B-Research/IA/IA5/LITHOMAP/dev/lithomap.html  +
E
Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones, M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, doi:10.1029/2008JD10201  +
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 (Accessed on DD-MMM-YYYY)  +
P
If you use data from the PSMSL, then please make sure to acknowledge the Service in your reports.  +