Presenters-0450

From CSDMS
CSDMS 2019 Webinars


Continuous Streamflow and Nearshore Wave Monitoring from Time-lapse Cameras using Deep Neural Networks


Registration link: https://cuboulder.zoom.us/meeting/register/9f09d4ca48d6dba066858a512be5123a

Dan Buscombe

Northern Arizona University, United States
daniel.buscombe@nau.edu


Abstract
The expense and logistics of monitoring streamflow (e.g. stage and discharge) and nearshore waves (e.g. height and period) using in situ instrumentation such as current meters, bubblers, pressure transducers, etc, limits the extent to which such important basic information can be acquired. Machine learning might offer a solution, if such information can be obtained remotely from time-lapse imagery using inexpensive consumable camera installations. To that end, I describe a proof-of-concept study into designing and implementing a single deep learning framework that can be used for both stream gaging and wave gauging from appropriate time-series of imagery. I show that it is possible to train the framework to estimate 1) stage and/or discharge from oblique imagery of streams at USGS gaging stations, using existing time-lapse camera infrastructure; and 2) nearshore wave height and period from oblique and rectified imagery from Argus systems. This proof-of-concept technique is based on deep convolutional neural networks (CNNs), which are deep learning models for regression tasks based on automated image feature extraction. The stream/wave gauge model framework consists of an existing generic CNN model to extract features from imagery - called a ‘base model', with additional layers to distill the feature information into lower dimensional spaces, prevent overfitting, and a final layer of dense neurons to predict continuously varying quantities. Given enough training data, the model can generalize well to a site despite variation in, for example, lighting, weather, snow cover, vegetation, and any transient objects in the scene. This development might offer the potential to train models for imagery at sites based on short deployments of in situ instrumentation, especially useful for sites where instrumentation is difficult or expensive to maintain for long periods. This entirely data-driven technique, at least for now, must be trained separately for each site and quantity, so would be suitable for very long-term, site-specific estimation of wave or hydraulic parameters from stationary camera installations, subsequent to a training period. Further development might promote low-cost (or even hobbyist) hydrodynamic and hydraulic monitoring anywhere.

Please acknowledge the original contributors when you are using this material. If there are any copyright issues, please let us know (CSDMSweb@colorado.edu) and we will respond as soon as possible.

Of interest for:
  • Terrestrial Working Group
  • Coastal Working Group
  • Marine Working Group
  • Cyberinformatics and Numerics Working Group
  • Hydrology Focus Research Group
  • Chesapeake Focus Research Group
  • Critical Zone Focus Research Group
  • Human Dimensions Focus Research Group
  • Geodynamics Focus Research Group
  • Ecosystem Dynamics Focus Research Group
  • Coastal Vulnerability Initiative
  • Continental Margin Initiative
  • Artificial Intelligence & Machine Learning Initiative