CSDMS 2015 annual Meeting - Models meet data, data meet models

Accessing National Data and Distributed Models for Catchment Simulation

Gopal Bhatt

Pennsylvania State University, United States
Chris Duffy Pennsylvania State University United States
Lorne Leonard Pennsylvania State University United States

The objective of the clinic is: (1) to introduce the concept of essential terrestrial variables (ETVs) and HydroTerre1 as a continental scale ETV-repository for catchment modeling, and (2) to demonstrate the use of ETV’s with the Penn State Integrated Hydrologic Model (PIHM) for simulating the catchment water cycle. PIHM2 is a multi-process, multi-scale hydrologic model where the hydrologic processes are fully coupled using the semi-discrete finite volume method. PIHMgis3 is an open source, platform independent, and extensible distributed modeling framework for setup, execute, and analyze model simulations. Through the procedural framework of PIHMgis, participants will be introduced to multiple data processing tools, and presented with a live demonstration of (i) accessing HydroTerre ETV service, (ii) ETV geodata translator for PIHM, (iii) automated ingestion of model parameters from national geospatial databases, (iv) conditional domain decomposition of the watershed into quality triangular mesh elements for numerical simulation, (v) performing multi-state distributed hydrologic model simulations on desktop, and (vi) visualization of model results as time-series plots and geo-spatial maps. In the clinic, an application is developed for a small-scale hillslope catchment Susquehanna-Shalehills Critical Zone Observatory (SSHCZO), which serves as a guided example of the desktop workflow, which is readily used to develop your own catchment simulation.




Please acknowledge the original contributors when you are using this material. If there are any copyright issues, please let us know ( and we will respond as soon as possible.

Of interest for:
  • Terrestrial Working Group
  • Hydrology Focus Research Group
  • Critical Zone Focus Research Group