CSDMS 2013 annual meeting poster Li Li

Presentation provided during CSDMS annual meeting 2013

Integrated modeling of coupled flow, transport, and biogeochemical processes in the natural subsurface

Li Li, Penn State University University Park Pennsylvania, United States. lili@eme.psu.edu

CSDMS2013 poster LiLi.png


Reactive Transport Modeling (RTM) has been developed in the past decades and used extensively to understand the coupling between fluid flow, diffusive and dispersive transport, and biogeochemical processes in the natural subsurface in a wide range of applications relevant to earth and environmental sciences. Reactive transport modeling solves conservation equations of mass, momentum, and energy. Process-based reactive transport modeling allows the regeneration of spatial and temporal propagation of tightly coupled subsurface processes at spatial scales ranging from single pores (microns) to watershed scales (kilometers). RTM can keep track of evolving porous medium properties including porosity, permeability, surface area, and mineralogical composition. In this presentation I will introduce the general framework of RTM together with its advantages and challenges. The use of RTM at different spatial and temporal scales will be illustrated using two examples. A one-dimensional chemical weathering model for soil formation in Marcellus Shale will illustrate its use in Critical Zone (CZ) processes at the time scales of tens of thousands of years. A two dimensional biogeochemical transport model will exemplify its use in understanding engineered bioremediation processes in natural, heterogeneous porous media at the time scale of months to years.

* Please acknowledge the original contributors when you are using this material. If there are any copyright issues, please let us know and we will respond as soon as possible.