CSDMS 2011 annual meeting poster Chunshui Yu

From CSDMS
Presentation provided during CSDMS annual meeting 2011

Depth-Averaged Two Dimensional Model Using Cartesian Cut-Cell Approach

Chunshui Yu, Univ. of Arizona Tucson Arizona, USA.
Jennifer Duan, Univ. of Arizona Tucson Arizona, USA. gduan@email.arizona.edu

Abstract:

A two-dimensional numerical model was developed for simulating free surface flow. The model is based on the solutions of two-dimensional depth averaged Navier-Stokes equations. A finite volume method is applied such that mass conservation is satisfied both locally and globally. The model adopted the two-step, high resolution MUSCL-Hancock scheme. This Godunov type scheme is used together with the approximate Riemann solver. The boundary cells are treated as cut-cells in order to accommodate arbitrarily geometries of natural rivers. There are sixteen types of cut-cells depending on the slope of the boundary intersection with the cell. A cell merging technique is incorporated in the model that combines small cells with neighboring cells to create a larger cell, helps keeping the CFL condition. The cut-cells approach permits a fully boundary-fitted mesh without implementing a complex mesh generation procedure for irregular geometries. The model is verified by several laboratory experiments including unsteady flow passing through cylindrical piers and dam break flow in a rectangular channel. The model is also applied to simulate a 100-year flood event occurred at the Huron Island reach of the Mississippi River, where flow paths in the island formed a complex channel network as flood propagates.

* Please acknowledge the original contributors when you are using this material. If there are any copyright issues, please let us know and we will respond as soon as possible.