Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Extended model description" with value "This class implements Voller, Hobley, and Paola’s experimental matrix solutions for flow routing. The method works by solving for a potential field at all nodes on the grid, which enforces both mass conservation and flow downhill along topographic gradients. It is order n and highly efficient, but does not return any information about flow connectivity. Options are permitted to allow “abstract” routing (flow enforced downslope, but no particular assumptions are made about the governing equations), or routing according to the Chezy or Manning equations. This routine assumes that water is distributed evenly over the surface of the cell in deriving the depth, and does not assume channelization. You will need to back- calculate channel depths for yourself using known widths at each node if that is what you want.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Model:PotentialityFlowRouter  + (This class implements Voller, Hobley, and This class implements Voller, Hobley, and Paola’s experimental matrix solutions for flow routing. The method works by solving for a potential field at all nodes on the grid, which enforces both mass conservation and flow downhill along topographic gradients. It is order n and highly efficient, but does not return any information about flow connectivity.</br></br>Options are permitted to allow “abstract” routing (flow enforced downslope, but no particular assumptions are made about the governing equations), or routing according to the Chezy or Manning equations. This routine assumes that water is distributed evenly over the surface of the cell in deriving the depth, and does not assume channelization. You will need to back- calculate channel depths for yourself using known widths at each node if that is what you want.ths at each node if that is what you want.)