Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Extended model description" with value "The VIC model is a large-scale, semi-distributed hydrologic model. As such, it shares several basic features with the other land surface models (LSMs) that are commonly coupled to global circulation models (GCMs): The land surface is modelled as a grid of large (>1km), flat, uniform cells Sub-grid heterogeneity (e.g. elevation, land cover) is handled via statistical distributions. Inputs are time series of daily or sub-daily meteorological drivers (e.g. precipitation, air temperature, wind speed). Land-atmosphere fluxes, and the water and energy balances at the land surface, are simulated at a daily or sub-daily time step Water can only enter a grid cell via the atmosphere Non-channel flow between grid cells is ignored The portions of surface and subsurface runoff that reach the local channel network within a grid cell are assumed to be >> the portions that cross grid cell boundaries into neighboring cells Once water reaches the channel network, it is assumed to stay in the channel (it cannot flow back into the soil) This last point has several consequences for VIC model implementation: Grid cells are simulated independently of each other Entire simulation is run for each grid cell separately, 1 grid cell at a time, rather than, for each time step, looping over all grid cells Meteorological input data for each grid cell (for the entire simulation period) are read from a file specific to that grid cell Time series of output variables for each grid cell (for the entire simulation period) are stored in files specific to that grid cell Routing of stream flow is performed separately from the land surface simulation, using a separate model (typically the routing model of Lohmann et al., 1996 and 1998)". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Model:VIC  + (The VIC model is a large-scale, semi-distrThe VIC model is a large-scale, semi-distributed hydrologic model. As such, it shares several basic features with the other land surface models (LSMs) that are commonly coupled to global circulation models (GCMs):</br></br>The land surface is modelled as a grid of large (>1km), flat, uniform cells</br>Sub-grid heterogeneity (e.g. elevation, land cover) is handled via statistical distributions.</br>Inputs are time series of daily or sub-daily meteorological drivers (e.g. precipitation, air temperature, wind speed).</br>Land-atmosphere fluxes, and the water and energy balances at the land surface, are simulated at a daily or sub-daily time step</br>Water can only enter a grid cell via the atmosphere</br>Non-channel flow between grid cells is ignored</br>The portions of surface and subsurface runoff that reach the local channel network within a grid cell are assumed to be >> the portions that cross grid cell boundaries into neighboring cells</br>Once water reaches the channel network, it is assumed to stay in the channel (it cannot flow back into the soil)</br>This last point has several consequences for VIC model implementation:</br></br>Grid cells are simulated independently of each other</br>Entire simulation is run for each grid cell separately, 1 grid cell at a time, rather than, for each time step, looping over all grid cells</br>Meteorological input data for each grid cell (for the entire simulation period) are read from a file specific to that grid cell</br>Time series of output variables for each grid cell (for the entire simulation period) are stored in files specific to that grid cell</br>Routing of stream flow is performed separately from the land surface simulation, using a separate model (typically the routing model of Lohmann et al., 1996 and 1998)the routing model of Lohmann et al., 1996 and 1998))