Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Extended model description" with value "A three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended upon twoPhaseEulerSedFoam (https://csdms.colorado.edu/wiki/Model:TwoPhaseEulerSedFoam). In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different inter-granular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k-ϵ and a k-ω model. The numerical implementation is first demonstrated by two validation test cases, sedimentation of suspended particles and laminar bed-load. Two applications are then investigated to illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems, such as sheet flow and scouring, with different combinations of inter-granular stress and turbulence models.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Model:SedFoam-2.0  + (A three-dimensional two-phase flow solver,A three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended upon twoPhaseEulerSedFoam (https://csdms.colorado.edu/wiki/Model:TwoPhaseEulerSedFoam). In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different inter-granular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k-ϵ and a k-ω model. The numerical implementation is first demonstrated by two validation test cases, sedimentation of suspended particles and laminar bed-load. Two applications are then investigated to illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems, such as sheet flow and scouring, with different combinations of inter-granular stress and turbulence models.ter-granular stress and turbulence models.)