Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract presentation" with value "Sediment spanersions costing billions of dollars are planned on deltas globally, to mitigate land loss due to rising sea levels and subsidence. Downstream of engineered levee breaks, land building will rely on natural delta processes to disperse sediment. But, external factors known to affect natural delta processes vary between possible spanersion sites (e.g., wave energy, basin substrate, marsh activity), making it difficult to quantitatively compare land-building potential between sites and optimally allocate engineering resources. We have implemented the pyDeltaRCM numerical model to provide an easily extensible platform for simulating delta evolution under arbitrary environmental factors. With the computationally efficient model, we isolate (and combine) these factors to observe effects on land building, and build a framework to quickly assess land-building potential at different sites. In this presentation, I will describe pyDeltaRCM model design, and show ongoing studies to assess land-building potential of spanersions under different forcings. Model computational efficiency enables uncertainty quantification that will benefit spanersion planning and resource allocation, by identifying relative impact of different external factors.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Presenters-0560  + (Sediment diversions costing billions of doSediment diversions costing billions of dollars are planned on deltas globally, to mitigate land loss due to rising sea levels and subsidence. Downstream of engineered levee breaks, land building will rely on natural delta processes to disperse sediment. But, external factors known to affect natural delta processes vary between possible diversion sites (e.g., wave energy, basin substrate, marsh activity), making it difficult to quantitatively compare land-building potential between sites and optimally allocate engineering resources. We have implemented the pyDeltaRCM numerical model to provide an easily extensible platform for simulating delta evolution under arbitrary environmental factors. With the computationally efficient model, we isolate (and combine) these factors to observe effects on land building, and build a framework to quickly assess land-building potential at different sites. In this presentation, I will describe pyDeltaRCM model design, and show ongoing studies to assess land-building potential of diversions under different forcings. Model computational efficiency enables uncertainty quantification that will benefit diversion planning and resource allocation, by identifying relative impact of different external factors.tive impact of different external factors.)