Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract presentation" with value "SNAC (StGermaiN Analysis of Continua) is a 3D parallel explicit finite element code for modeling long-term deformations of lithosphere. It is an open source being distributed through Computational Infrastructure for Geodynamics (http://geodynamics.org/cig/software/snac/) as well as through CSDMS web site (https://csdms.colorado.edu/wiki/Model:SNAC).<br/><br/>This clinic will provide an overview of SNAC and lead participants through a typical work procedure for producing a 3D lithospheric deformation model on a high performance cluster. Specifically, participants will take the following steps: 0) acquiring an account on the CSDMS HPC (to be done before the clinic); 1) checking out the source code through a version control system; 2) building SNAC on the cluster; 3) getting familiar with SNAC by running a cookbook example in parallel and visualizing outputs; 4) modifying the source codes to customize a model.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Presenters-0140  + (SNAC (StGermaiN Analysis of Continua) is aSNAC (StGermaiN Analysis of Continua) is a 3D parallel explicit finite element code for modeling long-term deformations of lithosphere. It is an open source being distributed through Computational Infrastructure for Geodynamics (http://geodynamics.org/cig/software/snac/) as well as through CSDMS web site (https://csdms.colorado.edu/wiki/Model:SNAC).<br/><br/>This clinic will provide an overview of SNAC and lead participants through a typical work procedure for producing a 3D lithospheric deformation model on a high performance cluster. Specifically, participants will take the following steps: 0) acquiring an account on the CSDMS HPC (to be done before the clinic); 1) checking out the source code through a version control system; 2) building SNAC on the cluster; 3) getting familiar with SNAC by running a cookbook example in parallel and visualizing outputs; 4) modifying the source codes to customize a model.s; 4) modifying the source codes to customize a model.)