Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract presentation" with value "Biostabilizing organisms, such as saltmarsh and microphytobenthos, can play a crucial role in shaping the morphology of estuaries and coasts by locally stabilizing the sediment. However, their impact on large-scale morphology, which highly depends on the feedback between spatio-temporal changes in their abundance and physical forcing, remains highly uncertain. We studied the effect of seasonal growth and decay of biostabilizing organisms, in response to field calibrated physical forcings, on estuarine morphology over decadal timescales using a novel eco-morphodynamic model. The code includes temporal saltmarsh an microphytobenthos growth and aging as well as spatially varying vegetation fractions determined by mortality pressures. Growth representations are empirical and literature-based to avoid prior calibration. Novel natural patterns emerged in this model revealing that observed density gradients in vegetation are defined by the life-stages that increase vegetation resilience with age. The model revealed that the formation of seasonal and long term mud layering is governed by a ratio of flow velocity and hydroperiod altered by saltmarsh and microphytobenthos differently, showing that the type of biostabilizer determines the conditions under which mud can settle and be preserved. The results show that eco-engineering effects define emerging saltmarsh patterns from a combination of a positive effect reducing flow velocities and a negative effect enhancing hydroperiod. Consequently, saltmarsh and mud patterns emerge from their bilateral interactions that hence strongly define morphological development.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Presenters-0481  + (Biostabilizing organisms, such as saltmarsBiostabilizing organisms, such as saltmarsh and microphytobenthos, can play a crucial role in shaping the morphology of estuaries and coasts by locally stabilizing the sediment. However, their impact on large-scale morphology, which highly depends on the feedback between spatio-temporal changes in their abundance and physical forcing, remains highly uncertain. </br>We studied the effect of seasonal growth and decay of biostabilizing organisms, in response to field calibrated physical forcings, on estuarine morphology over decadal timescales using a novel eco-morphodynamic model. The code includes temporal saltmarsh an microphytobenthos growth and aging as well as spatially varying vegetation fractions determined by mortality pressures. Growth representations are empirical and literature-based to avoid prior calibration.</br>Novel natural patterns emerged in this model revealing that observed density gradients in vegetation are defined by the life-stages that increase vegetation resilience with age. The model revealed that the formation of seasonal and long term mud layering is governed by a ratio of flow velocity and hydroperiod altered by saltmarsh and microphytobenthos differently, showing that the type of biostabilizer determines the conditions under which mud can settle and be preserved. The results show that eco-engineering effects define emerging saltmarsh patterns from a combination of a positive effect reducing flow velocities and a negative effect enhancing hydroperiod. Consequently, saltmarsh and mud patterns emerge from their bilateral interactions that hence strongly define morphological development.strongly define morphological development.)