Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract" with value "Quantitative constraints on the frequency of hazards is vital to risk assessments and appropriate mitigation strategies. The frequency of landslides, a common hazard in steep landscapes, is difficult to quantify for a number of reasons including: (1) infrequent occurrence; (2) rapid deterioration of the morphological signature of a landslide event; (3) expensive geochronological approaches are often require to obtain the age of a single event. Through the use of numerical modeling, I propose that more careful approach of using cosmogenic nuclide concentrations of alluvial sediment sourced in landslide dominated drainage basins can alleviate many of these hurdles and provide regional constraints on landslide frequency. This suggestion stems from new development of an old numerical code that quantifies the impacts of landslides on CRN concentrations in alluvial sediment. The modeling shows that quantitative insight can be obtained by measuring CRN concentrations (1) of multiple nuclides (10Be and 14C), (2) of multiple grain sizes (i.e. coarse material sourced from depth in the hillslope), and (3) over time. I will present the new model developments and results as well as discuss some strategies towards applying this in field settings.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • 2018 CSDMS meeting-010  + (Quantitative constraints on the frequency Quantitative constraints on the frequency of hazards is vital to risk assessments and appropriate mitigation strategies. The frequency of landslides, a common hazard in steep landscapes, is difficult to quantify for a number of reasons including: (1) infrequent occurrence; (2) rapid deterioration of the morphological signature of a landslide event; (3) expensive geochronological approaches are often require to obtain the age of a single event. Through the use of numerical modeling, I propose that more careful approach of using cosmogenic nuclide concentrations of alluvial sediment sourced in landslide dominated drainage basins can alleviate many of these hurdles and provide regional constraints on landslide frequency. This suggestion stems from new development of an old numerical code that quantifies the impacts of landslides on CRN concentrations in alluvial sediment. The modeling shows that quantitative insight can be obtained by measuring CRN concentrations (1) of multiple nuclides (10Be and 14C), (2) of multiple grain sizes (i.e. coarse material sourced from depth in the hillslope), and (3) over time. I will present the new model developments and results as well as discuss some strategies towards applying this in field settings.s towards applying this in field settings.)