Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract" with value "Post-fire debris flow is a common hazard in the western United States. However, after decades of efforts in the debris flow research community, universally applicable post-fire debris flow predict methods are still lacking. Large discrepancies in the post-fire debris flow initiation mechanism are the main source that limits the predictive accuracy of debris flow. Improve and understanding these discrepancies is significant to possibly improve the debris flow modeling. In this work, we propose a data-driven, physics-informed machine learning approach for reconstructing and predicting debris flows. By using a classic supervising modern learning technique based on logistics regression, the logistics regression functions are trained by existing direct field measurements and debris flow numerical simulations from Las Lomas after 2016 Fish fire and then used to predict debris flow in different drainage basin where data are not available. The proposed method is evaluated by two classes of simulations: sediment transport model and runoff model. In runoff simulations, five drainage basins are considered: Las Lomas, Arroyo Seco, Dunsmore 1, Dunsmore 2, Big Tujunga. In sediment transport model, Las Lomas and Arroyo Seco watersheds are applied. Excellent predictive performances were observed in both scenarios, demonstrating the capabilities of the proposed method.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • 2018 CSDMS meeting-090  + (Post-fire debris flow is a common hazard iPost-fire debris flow is a common hazard in the western United States. However, after decades of efforts in the debris flow research community, universally applicable post-fire debris flow predict methods are still lacking. Large discrepancies in the post-fire debris flow initiation mechanism are the main source that limits the predictive accuracy of debris flow. Improve and understanding these discrepancies is significant to possibly improve the debris flow modeling. In this work, we propose a data-driven, physics-informed machine learning approach for reconstructing and predicting debris flows. By using a classic supervising modern learning technique based on logistics regression, the logistics regression functions are trained by existing direct field measurements and debris flow numerical simulations from Las Lomas after 2016 Fish fire and then used to predict debris flow in different drainage basin where data are not available. The proposed method is evaluated by two classes of simulations: sediment transport model and runoff model. In runoff simulations, five drainage basins are considered: Las Lomas, Arroyo Seco, Dunsmore 1, Dunsmore 2, Big Tujunga. In sediment transport model, Las Lomas and Arroyo Seco watersheds are applied. Excellent predictive performances were observed in both scenarios, demonstrating the capabilities of the proposed method.g the capabilities of the proposed method.)