Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract" with value "Observations in coastal environments show that seabed resuspension can impact water quality and biogeochemical dynamics by vertically mixing sediment and water, and by redistributing material that has been entrained into the water column. Yet, ocean models that incorporate both sediment transport and biogeochemical processes are rare. The scientific community frequently utilizes hydrodynamic-sediment transport numerical models, but hydrodynamic-biogeochemical models ignore or simplify sediment processes, and have not directly accounted for the effect of resuspension on oxygen and nutrient dynamics. This presentation focuses on development and implementation of HydroBioSed, a coupled hydrodynamic-sediment transport-biogeochemistry model that was developed within the open-source Regional Ocean Modeling System (ROMS) framework. HydroBioSed can account for processes including advection, resuspension, diffusion within the seabed and at the sediment-water interface, organic matter remineralization, and oxidation of reduced chemical species. Implementation of the coupled HydroBioSed model for different locations, including the Rhone River subaqueous delta and the northern Gulf of Mexico, have helped to quantify the effects of both sediment transport and biogeochemical processes. Results indicate that resuspension-induced exposure of anoxic, ammonium-rich portions of the seabed to the more oxic, ammonium-poor water column can significantly affect seabed-water column fluxes of dissolved oxygen and nitrogen. Also, entrainment of seabed organic matter into the water column may significantly draw down oxygen concentrations in some environments. Ongoing work focuses on how resuspension and redistribution of organic matter and sediment may influence oxygen dynamics in the Chesapeake Bay.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Annualmeeting:2017 CSDMS meeting-083  + (Observations in coastal environments show Observations in coastal environments show that seabed resuspension can impact water quality and biogeochemical dynamics by vertically mixing sediment and water, and by redistributing material that has been entrained into the water column. Yet, ocean models that incorporate both sediment transport and biogeochemical processes are rare. The scientific community frequently utilizes hydrodynamic-sediment transport numerical models, but hydrodynamic-biogeochemical models ignore or simplify sediment processes, and have not directly accounted for the effect of resuspension on oxygen and nutrient dynamics.</br></br>This presentation focuses on development and implementation of HydroBioSed, a coupled hydrodynamic-sediment transport-biogeochemistry model that was developed within the open-source Regional Ocean Modeling System (ROMS) framework. HydroBioSed can account for processes including advection, resuspension, diffusion within the seabed and at the sediment-water interface, organic matter remineralization, and oxidation of reduced chemical species. Implementation of the coupled HydroBioSed model for different locations, including the Rhone River subaqueous delta and the northern Gulf of Mexico, have helped to quantify the effects of both sediment transport and biogeochemical processes. Results indicate that resuspension-induced exposure of anoxic, ammonium-rich portions of the seabed to the more oxic, ammonium-poor water column can significantly affect seabed-water column fluxes of dissolved oxygen and nitrogen. Also, entrainment of seabed organic matter into the water column may significantly draw down oxygen concentrations in some environments. Ongoing work focuses on how resuspension and redistribution of organic matter and sediment may influence oxygen dynamics in the Chesapeake Bay.nce oxygen dynamics in the Chesapeake Bay.)