Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract" with value "Glacially-derived debris often blankets alpine streams, yet few models have explicitly linked sediment supply and transport between glacial and fluvial systems. Here, we combine a 1-D river-incision model with a quarrying-dominated glacial erosion model. We link sediment production and supply between the two systems, and include a valley width variable that allows glaciers to widen valleys and temporarily store glacially-derived sediment within those valleys. A lateral erosion factor in the fluvial model re-incorporates this sediment, which is transported using a modified Meyer-Peter and Mueller equation and incorporated into bedrock erosion through a cover effect. We calibrated this model using the DAKOTA calibration software to Holocene glaciated alpine rivers in North America and are able to match observed topography within an acceptable Χ^2 fit of <2.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • 2021 CSDMS meeting-068  + (Glacially-derived debris often blankets alGlacially-derived debris often blankets alpine streams, yet few models have explicitly linked sediment supply and transport between glacial and fluvial systems. Here, we combine a 1-D river-incision model with a quarrying-dominated glacial erosion model. We link sediment production and supply between the two systems, and include a valley width variable that allows glaciers to widen valleys and temporarily store glacially-derived sediment within those valleys. A lateral erosion factor in the fluvial model re-incorporates this sediment, which is transported using a modified Meyer-Peter and Mueller equation and incorporated into bedrock erosion through a cover effect. We calibrated this model using the DAKOTA calibration software to Holocene glaciated alpine rivers in North America and are able to match observed topography within an acceptable Χ^2 fit of <2.graphy within an acceptable Χ^2 fit of <2.)