Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract" with value "Densely populated coastal deltas worldwide face cascading flood and salinization hazards associated with sea-level rise, storm surges, dwindling sediment supplies, and land subsidence. One of the greatest hurdles to hazard prediction stems from quantifying the land-subsidence component, which exhibits significant spatial and temporal variations across any given delta. Here, we present a delta-subsidence model capable of quantifying these variations. The model is built upon fundamental principles of effective stress, conservation of mass, and Darcy flow; as well as constitutive relations for porosity and edaphic factors (e.g. roots, burrows). For an input sediment column and deposition rate, we quantify the depth-profile of vertical land motion over time, allowing for direct comparison with field observations spanning various depths, timescales, and methods (e.g., GPS stations; Rod-surface-elevation tables; C14 and OSL ages). Preliminary results demonstrate the model can accurately resolve decadal-scale subsidence patterns on the Ganges-Brahmaputra delta, including subsidence hotspots associated with fine-grained lithologies, buried Pleistocene paleovalleys, and river embankments constructed in the 1950’s. This predictive subsidence model can improve assessments of coastal flood hazards on the Ganges-Brahmaputra and other deltas worldwide; and help inform ongoing billion-dollar restoration efforts facing crucial decisions as to where and when coastal barriers, sediment spanersions, and settlement relocations will be implemented in the coming century.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • 2024 CSDMS meeting-053  + (Densely populated coastal deltas worldwideDensely populated coastal deltas worldwide face cascading flood and salinization hazards associated with sea-level rise, storm surges, dwindling sediment supplies, and land subsidence. One of the greatest hurdles to hazard prediction stems from quantifying the land-subsidence component, which exhibits significant spatial and temporal variations across any given delta. Here, we present a delta-subsidence model capable of quantifying these variations. The model is built upon fundamental principles of effective stress, conservation of mass, and Darcy flow; as well as constitutive relations for porosity and edaphic factors (e.g. roots, burrows). For an input sediment column and deposition rate, we quantify the depth-profile of vertical land motion over time, allowing for direct comparison with field observations spanning various depths, timescales, and methods (e.g., GPS stations; Rod-surface-elevation tables; C14 and OSL ages). Preliminary results demonstrate the model can accurately resolve decadal-scale subsidence patterns on the Ganges-Brahmaputra delta, including subsidence hotspots associated with fine-grained lithologies, buried Pleistocene paleovalleys, and river embankments constructed in the 1950’s. This predictive subsidence model can improve assessments of coastal flood hazards on the Ganges-Brahmaputra and other deltas worldwide; and help inform ongoing billion-dollar restoration efforts facing crucial decisions as to where and when coastal barriers, sediment diversions, and settlement relocations will be implemented in the coming century.will be implemented in the coming century.)