Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract" with value "Deltas exhibit spatially and temporally variable subsidence due, in part, to faulting that lowers the land surface over time, thereby converting subaerial land to open water. In light of expected billion-dollar investments globally to redirect sediment via channel spanersions and thus restore delta land, it is crucial to understand whether discrete faulting-induced subsidence events drive distributary channel networks to reorganize. Here, we take inspiration from examples from two deltas of faulting with documented surface expression and with distinct flux-to-shoreline symmetries: the symmetric-flux Selenga River delta (Russia) and the asymmetric-flux Mississippi River delta (Louisiana, USA). Using simulations with the DeltaRCM numerical model resembling these deltaic landscapes, we examine distributary network reorganization to faulting-induced subsidence over a range of surface area and slip displacement. Our findings indicate that in a symmetric-flux delta system, the duration of fault surface expression is strongly and non-linearly related to displacement, because slip above a threshold length-scale drives wholesale channel network reorganization, whereas smaller displacement does not. In contrast, displacement is only weakly related to network reorganization in the asymmetric-flux simulations. In this environment, faults located in areas of the delta not maintaining a surface-water connection to the main channel at the time of the subsidence event do not instigate network reorganization. Moreover, for the range of surface area and slip displacement we examined, areas of faulting also do not significantly influence the distributary network at later times. Nevertheless, all faulting events in simulated deltas, with both symmetric and asymmetric flux, create accommodation space and so inhibit the construction of subaerial land to some degree.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • 2021 CSDMS meeting-106  + (Deltas exhibit spatially and temporally vaDeltas exhibit spatially and temporally variable subsidence due, in part, to faulting that lowers the land surface over time, thereby converting subaerial land to open water. In light of expected billion-dollar investments globally to redirect sediment via channel diversions and thus restore delta land, it is crucial to understand whether discrete faulting-induced subsidence events drive distributary channel networks to reorganize. Here, we take inspiration from examples from two deltas of faulting with documented surface expression and with distinct flux-to-shoreline symmetries: the symmetric-flux Selenga River delta (Russia) and the asymmetric-flux Mississippi River delta (Louisiana, USA). Using simulations with the DeltaRCM numerical model resembling these deltaic landscapes, we examine distributary network reorganization to faulting-induced subsidence over a range of surface area and slip displacement. Our findings indicate that in a symmetric-flux delta system, the duration of fault surface expression is strongly and non-linearly related to displacement, because slip above a threshold length-scale drives wholesale channel network reorganization, whereas smaller displacement does not. In contrast, displacement is only weakly related to network reorganization in the asymmetric-flux simulations. In this environment, faults located in areas of the delta not maintaining a surface-water connection to the main channel at the time of the subsidence event do not instigate network reorganization. Moreover, for the range of surface area and slip displacement we examined, areas of faulting also do not significantly influence the distributary network at later times. Nevertheless, all faulting events in simulated deltas, with both symmetric and asymmetric flux, create accommodation space and so inhibit the construction of subaerial land to some degree.truction of subaerial land to some degree.)