Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract" with value "Deltaic, estuarine, and barrier coasts are experiencing unprecedentedly fast rates of morphological changes, which constitute a threat to people, infrastructures, and economies. Predicting these changes in the future could help to develop cost-efficient mitigation and adaptation plans. Here I present recent progresses in simulating large scale and long term coastal evolution using a new morphodynamic-oriented model. Through opportune simplifications the model simulates tides, surges (hurricanes), wind waves, swells, sand/mud/organic sediment, stratigraphy, and vegetation in a numerically-efficient way. The model reproduces the self-organization of barrier islands and the formation of marshes in the backbarrier/estuarine region. The model emphasizes how mud supply is a major driver for the long-term retreat of marshes. The model also simulates how riverine inputs into backbarrier basins – for example through man-made river spanersions – can reduce both marsh edge erosion and barrier island retreat.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • 2019 CSDMS meeting-016  + (Deltaic, estuarine, and barrier coasts areDeltaic, estuarine, and barrier coasts are experiencing unprecedentedly fast rates of morphological changes, which constitute a threat to people, infrastructures, and economies. Predicting these changes in the future could help to develop cost-efficient mitigation and adaptation plans. Here I present recent progresses in simulating large scale and long term coastal evolution using a new morphodynamic-oriented model. Through opportune simplifications the model simulates tides, surges (hurricanes), wind waves, swells, sand/mud/organic sediment, stratigraphy, and vegetation in a numerically-efficient way. The model reproduces the self-organization of barrier islands and the formation of marshes in the backbarrier/estuarine region. The model emphasizes how mud supply is a major driver for the long-term retreat of marshes. The model also simulates how riverine inputs into backbarrier basins – for example through man-made river diversions – can reduce both marsh edge erosion and barrier island retreat.h edge erosion and barrier island retreat.)