Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract" with value "Changes in landscape structure are known to affect species macroevolution largely by altering habitat connectivity. Species can disperse across a greater area when habitats expand. Habitat fragmentation reduces gene flow and increases rates of speciation. Conversely, a shrinking habitat increases the likelihood of species extinction. We integrated macroevolution processes (dispersal, speciation, and extinction) into the landscape evolution modeling toolkit called Landlab. Here, we present a new Landlab component, BiotaEvolver that tracks and evolves the species introduced to a model grid. In one model, surface process components evolve the landscape and BiotaEvolver evolves the species in response to topographic change or other characteristics of the model set by the user. BiotaEvolver provides a base species and users can subclass this object to define properties and behaviors of species types. We demonstrate BiotaEvolver using scenarios of drainage rearrangement and stream species. Stream captures and high macroevolution process rates occurred within a limited combination of parameters and conditions in hundreds of model runs. The number of species increased most rapidly after a response period following a perturbation. Species numbers declined then became stable after this period.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • 2018 CSDMS meeting-023  + (Changes in landscape structure are known tChanges in landscape structure are known to affect species macroevolution largely by altering habitat connectivity. Species can disperse across a greater area when habitats expand. Habitat fragmentation reduces gene flow and increases rates of speciation. Conversely, a shrinking habitat increases the likelihood of species extinction.</br></br>We integrated macroevolution processes (dispersal, speciation, and extinction) into the landscape evolution modeling toolkit called Landlab. Here, we present a new Landlab component, BiotaEvolver that tracks and evolves the species introduced to a model grid. In one model, surface process components evolve the landscape and BiotaEvolver evolves the species in response to topographic change or other characteristics of the model set by the user. BiotaEvolver provides a base species and users can subclass this object to define properties and behaviors of species types.</br></br>We demonstrate BiotaEvolver using scenarios of drainage rearrangement and stream species. Stream captures and high macroevolution process rates occurred within a limited combination of parameters and conditions in hundreds of model runs. The number of species increased most rapidly after a response period following a perturbation. Species numbers declined then became stable after this period.ined then became stable after this period.)