Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract" with value "By using a fixed-mesh approach, morphodynamic models have some difficulty to predict realistic equilibrium hydraulic geometries with vertical banks. In order to properly account for bank erosion without resorting to a complicated moving mesh algorithm, an immersed boundary approach that handles lateral bank retreat through fix computational cells is needed.<br> One of the main goals of the FESD Delta Dynamics Collaboration is developing a tested, high-resolution quantitative numerical model to predict the coupled morphologic and ecologic evolution of deltas from engineering to geologic time scales. This model should be able to describe the creation and destruction of deltas made of numerous channels, mouth bars, and other channel-edge features, therefore requiring an approach that is able to deal with the disruption, destruction, and creation of sub-aerial land. In principle, these sub-aerial land surfaces can be randomly distributed over the computational domain. <br> We propose a new approach in Delft3D based on the volume of fluid algorithm, widely used in the literature for tracking moving interfaces between different fluids. We employ this method for implicitly tracking moving bank interfaces. This approach easily handles complicated geometries and can easily tackle the problem of merging or splitting of dry regions characterized by vertical vegetated banks.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Meeting:Abstract 2013 CSDMS meeting-102  + (By using a fixed-mesh approach, morphodynaBy using a fixed-mesh approach, morphodynamic models have some difficulty to predict realistic equilibrium hydraulic geometries with vertical banks. In order to properly account for bank erosion without resorting to a complicated moving mesh algorithm, an immersed boundary approach that handles lateral bank retreat through fix computational cells is needed.<br></br>One of the main goals of the FESD Delta Dynamics Collaboration is developing a tested, high-resolution quantitative numerical model to predict the coupled morphologic and ecologic evolution of deltas from engineering to geologic time scales. This model should be able to describe the creation and destruction of deltas made of numerous channels, mouth bars, and other channel-edge features, therefore requiring an approach that is able to deal with the disruption, destruction, and creation of sub-aerial land. In principle, these sub-aerial land surfaces can be randomly distributed over the computational domain. <br></br>We propose a new approach in Delft3D based on the volume of fluid algorithm, widely used in the literature for tracking moving interfaces between different fluids. We employ this method for implicitly tracking moving bank interfaces. This approach easily handles complicated geometries and can easily tackle the problem of merging or splitting of dry regions characterized by vertical vegetated banks.dry regions characterized by vertical vegetated banks.)