Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract" with value "At the catchment scale, alluvial rivers co-adjust their planform, cross-sectional, and longitudinal geometries in response to changing water and sediment inputs, base level and the transport of this sediment through the fluvial system. In this study, we derive a simple, physics-based model to understand and predict sand-bed river long-profile form and evolution. This model links sediment transport and river morphodynamics, following an analogous approach to that taken by Wickert and Schildgen (2019) for gravel-bed rivers. It allows for planform (width) adjustments as a function of excess shear stress by following Parker (1978); this linearizes the sediment-transport response to changing river discharge, and ultimately suggests a diffusive form for sand-bed river long-profile evolution. Here, we also present model results of gravel- and sand-bed river long profiles under a variety of water- and sediment-supply and base-level conditions to discuss how these may help us to better interpret the geological and geomorphological context of alluvial rivers, and better predict their changes over time. This expression for the long-profile evolution of transport-limited sand-bed rivers provides forward momentum to merge theory and models for gravel-bed and sand-bed river systems, to look at the alluvial river system response as a whole (from bedrock-alluvial transition to the point at which backwater effects become significant) over both human and geological time scales, and to decipher the long-term rate and magnitude of this response to facilitate a better understanding of the evolution of fluvial landscapes.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • 2023 CSDMS meeting-109  + (At the catchment scale, alluvial rivers coAt the catchment scale, alluvial rivers co-adjust their planform, cross-sectional, and longitudinal geometries in response to changing water and sediment inputs, base level and the transport of this sediment through the fluvial system. In this study, we derive a simple, physics-based model to understand and predict sand-bed river long-profile form and evolution. This model links sediment transport and river morphodynamics, following an analogous approach to that taken by Wickert and Schildgen (2019) for gravel-bed rivers. It allows for planform (width) adjustments as a function of excess shear stress by following Parker (1978); this linearizes the sediment-transport response to changing river discharge, and ultimately suggests a diffusive form for sand-bed river long-profile evolution. Here, we also present model results of gravel- and sand-bed river long profiles under a variety of water- and sediment-supply and base-level conditions to discuss how these may help us to better interpret the geological and geomorphological context of alluvial rivers, and better predict their changes over time. This expression for the long-profile evolution of transport-limited sand-bed rivers provides forward momentum to merge theory and models for gravel-bed and sand-bed river systems, to look at the alluvial river system response as a whole (from bedrock-alluvial transition to the point at which backwater effects become significant) over both human and geological time scales, and to decipher the long-term rate and magnitude of this response to facilitate a better understanding of the evolution of fluvial landscapes.ng of the evolution of fluvial landscapes.)