Model help:SuspSedDensityStrat

From CSDMS
Revision as of 16:06, 14 April 2011 by Happyfei (talk | contribs) (Created page with "<!-- How to create a new "Model help" page: 1) Log in to the wiki 2) Create a new page for each model, by using the following URL: * http://csdms.colorado.edu/wiki/Model help:...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
The CSDMS Help System

SuspSedDensityStrat

This model is used for calculating the effect of density stratification on the vertical profiles of velocity and suspended sediment.

Model introduction

The model is the calculation of Density Stratification Effects Associated with Suspended Sediment in Open Channels.

This program calculates the effect of sediment self-stratification on the streamwise velocity and suspended sediment concentration profiles in open-channel flow. Two options are given. Either the near-bed reference concentration Cr can be specified by the user, or the user can specify a shear velocity due to skin friction u*s and compute Cr from the Garcia-Parker sediment entrainment relation.

Model parameters

Parameter Description Unit
First parameter Description parameter [Units]
Parameter Description Unit
First parameter Description parameter [Units]

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

[math]\displaystyle{ k_{c} = {\frac{11 H}{e^ \left ( \kappa C z \right ) }} }[/math] (1)
[math]\displaystyle{ Cz = C_{f} ^ \left ( {\frac{-1}{2}} \right ) ={\frac{U}{u_{*}}} }[/math] (2)
[math]\displaystyle{ R = {\frac{\rho _{s}}{\rho}} - 1 }[/math] (3)
[math]\displaystyle{ Re_{p} = {\frac{sqrt \left ( R g D \right ) D}{\nu}} }[/math] (4)
[math]\displaystyle{ R_{f} = f \left ( Re_{p} \right ) }[/math] (5)
[math]\displaystyle{ R_{f} = {\frac{v_{s}}{sqrt \left ( R g D \right )}} }[/math] (6)
[math]\displaystyle{ \nu _{t} {\frac{du^*}{dz}} = u_{*} ^2 \left ( 1 - {\frac{z}{H}} \right ) }[/math] (7)
[math]\displaystyle{ v_{s} c^* + \nu _{t} {\frac {dc^*}{dz}} = 0 }[/math] (8)
[math]\displaystyle{ \nu_{t} = \kappa u_{*} H F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right ) }[/math] (9)
[math]\displaystyle{ \zeta = {\frac{z}{H}} }[/math] (10)
[math]\displaystyle{ Ri = -Rg {\frac{{\frac{dc^*}{dz}}}{\left ( {\frac{du^*}{dz}} \right ) ^2}} }[/math] (11)
[math]\displaystyle{ {\frac{u^* |_{\zeta_{t}}}{u_{*}}} = {\frac{1}{\kappa}} ln \left ( 30 \zeta _{r} {\frac{H}{k_{c}}} \right ) }[/math] (12)
  • Dimensionless forms
[math]\displaystyle{ u={\frac{u^*}{u_{*}}} }[/math] (13)
[math]\displaystyle{ c = {\frac{c^*}{c_{r} ^*}} }[/math] (14)
[math]\displaystyle{ {\frac{du}{d\zeta}} = {\frac{\left ( 1 - \zeta \right )}{\kappa F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right )}} }[/math] (15)
[math]\displaystyle{ {\frac{dc}{d \zeta}} = {\frac{1}{\kappa u_{*r}}} {\frac{1}{F{1} \left ( \zeta \right ) F_{2} \left ( Ri \right ) }} c }[/math] (16)
[math]\displaystyle{ Ri = - Ri_{*} {\frac{{\frac{dc}{d \zeta}}}{\left ( {\frac{du}{d \zeta}} \right ) ^2 }} }[/math] (17)
[math]\displaystyle{ u | _{*r} = {\frac{u_{*}}{v_{s}}} }[/math] (18)
[math]\displaystyle{ Ri_{*} = {\frac{R g H c_{r} ^*}{u_{*} ^2}} }[/math] (19)
  • Forms for the functions F_{1} and F{2}
[math]\displaystyle{ F{1} = \zeta \left ( 1 - \zeta \right ) }[/math] (20)
  • Simth and McLean (1977)

ζ_{r} <= ζ < 0.3

[math]\displaystyle{ F_{1} = \zeta + 1.32892 \zeta ^2 - 16.8632 \zeta ^3 + 25.22663 \zeta ^4 }[/math] (21)

0.3 <= ζ <= 1

[math]\displaystyle{ F{1} = 0.160552 +0.075605 \zeta -0.1305618 \zeta ^2 - 0.1055945 \zeta ^3 }[/math] (22)

Gelfenbaum and Smith (1986)

[math]\displaystyle{ F_{1} = \zeta exp \left ( - \zeta - 3.2 \zeta ^2 + {\frac{2}{3}} \zeta ^2 \right ) }[/math] (23)

Smith and McLean (1977)

[math]\displaystyle{ F{2} = 1 - 4.7 Ri }[/math] (24)

Gelfenbaum and Smith (1986)

[math]\displaystyle{ F_{2} = {\frac{1}{1 + 10.0 X}} }[/math] (25)
[math]\displaystyle{ X = {\frac{1.35 Ri}{1 + 1.35 Ri}} }[/math] (26)
  • Form for near-bed concentration
[math]\displaystyle{ c_{r} ^* = {\frac{A X_{e} ^*}{1 + {\frac{A}{0.3} X_{e} ^5}}} }[/math] (27)
[math]\displaystyle{ X_{e} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) }[/math] (28)
  • Solution equation
[math]\displaystyle{ u = {\frac{1}{\kappa}} ln \left ( 30 {\frac{H}{k_{s}}} \right ) }[/math] (29)
[math]\displaystyle{ c = \left ( {\frac{\left ( 1 - \zeta \right ) / \zeta }{\left ( 1 - \zeta _{r} \right ) \zeta _{r}}}\right ) ^ \left ( {\frac{1}{\kappa u_{*r}}} \right ) }[/math] (30)
[math]\displaystyle{ Ri =Ri_{*} {\frac{\kappa \zeta F_{2}}{u_{*r} \left ( 1 - \zeta \right ) }} c }[/math] (31)

Notes

Any notes, comments, you want to share with the user

Numerical scheme


Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

Dietrich, W. E. 1982 Settling velocity of natural particles. Water Resources Research, 18(6), 1615-1626.

Garcia, M. and Parker, G. 1991 Entrainment of bed sediment into suspension. J. Hydraul. Engrg., ASCE, 117(4), 414-435.

Gelfenbaum, G. and Smith, J. D. 1986 Experimental evaluation of a generalized suspended-sediment transport theory. In Shelf and Sandstones, Canadian Society of Petroleum Geologists Memoir II, Knight, R. J. and McLean, J. R., eds., 133 – 144.

Smith, J. D. and McLean, S. R. 1977 Spatially averaged flow over a wavy surface. J. Geophys. Res., 82(2), 1735-1746.

Links

[Model:SuspSedDensityStrat]